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ABSTRACT: Wireless sensor networks have recently received great attention from the scientic community,
because they hold the key to revolutionize many aspects of our economy and life. On the other hand, the de-
sign, implementation and operation of a wireless sensor network in a SHM system requires the synergy of
many disciplines, including civil engineering, signal processing, networking, etc. The process of collecting the
measurements acquired by a sensor network into a central sink node, constitutes one of the main challenges
in this area of research and is often referred to as the sensor reachback problem. In this work, we describe a
time-division multiple-access based protocol for sensor reachback, that takes into account the fact that sensor
measurements are correlated in time and space, in order to reduce the amount of information that needs to be
transmitted at the sink node. Furthermore, cooperative communication is incorporated into the developed proto-
col, so as to achieve reduced energy consumption. Experiments with real acceleration measurements, obtained
from the Canton Tower in China during an earthquake, have demonstrated the effectiveness of the proposed
method.

1 INTRODUCTION

Structural Health Monitoring (SHM) systems are
widely adopted to monitor the behavior of struc-
tures during forced vibration testing or natural exci-
tation (e.g. earthquakes, winds, live loading). Struc-
tural monitoring systems are applicable to a number
of common structures including buildings, bridges,
aircrafts and ships (Lynch 2006). Recent advances in
microelectronics and wireless communications have
enabled the development of low cost, low power de-
vices that integrate sensing, processing and wireless
communication capabilities. The collection of a large
number of such devices, deployed over some territory
of interest, gives rise to the so-called Wireless Sen-
sor Network (WSN). Wireless sensor networks of-
fer tremendous promise for accurate and continuous
structural monitoring using a dense array of inexpen-
sive sensors and possess many advantages over con-
ventional wired systems, particularly for large civil
infrastructure.

One of the most fundamental problems arising in

such a network is related to the transmission of the
acquired observations to a data-collecting node, often
termed to as the sink node, which has increased pro-
cessing and power consumption capabilities as com-
pared to the sensor nodes. The sensor reachback prob-
lem, as it is usually called, has recently received con-
siderable attention (Barros et al. 2004).

In general, there are several difficulties in the sen-
sor reachback problem. Firstly, the amount of data
generated by the sensor nodes is immense, owing to
the fact that structural monitoring applications need
to transfer relatively large amounts of dynamic re-
sponse measurement data with sampling frequencies
as high as 1000 Hz (Nagayama et al. 2010). Also,
the number of sensor nodes may be very large. Next,
the assumption that all sensors have direct, line-of-
sight link to the sink does not hold in the case of
these structures. Radio communication on and around
structures made of concrete or steel components is
usually complicated due to radio wave reflection, ab-
sorption, and other phenomena that result in poor re-
ceived signal quality. Moreover, sensor nodes are fre-



quently installed in partially- or completely- obscured
areas, such as between girders. As a result, not all sen-
sors may always have a channel to the sink of good
enough quality and therefore, direct communication
between each sensor node and the sink would con-
sume all the energy stored in the batteries of the sen-
sor nodes very quickly.

Hopefully however, recent advances promise that
the aforementioned problems can be alleviated. Re-
garding the problem of massive data generated at the
sensor nodes, it has been made clear that the fact that
sensor readings from nearby sensors may be corre-
lated, may be exploited so as to reduce the amount
of information required to be transmitted to the sink
node (Barros and Servetto 2006). For instance, the
data collected by the sensors on each span of a bridge
are correlated since they are measuring the vibration
of the same part of the physical structure. In addition,
in some cases of bridge design, two adjacent spans are
connected to a common anchorage, resulting in the
data across the two spans to be correlated. Similarly,
in the case of large buildings, it is natural to group
the sensors of the several distinct parts of the build-
ing (e.g. floors) and exploit their correlation. Thus,
data compression approaches such as the Slepian-
Wolf coding, implemented at the sensor nodes, offer
the potential to greatly reduce the amount of infor-
mation that needs to be transmitted (Stankovic et al.
2010). However, the Slepian-Wolf coding gives only
information-theoretical bounds for data compression
and it is quite difficult to be incorporated into a prac-
tical system.

Regarding the problem of the limited energy that
the sensor nodes can afford for data transmission, re-
cent advances in the field of cooperative communica-
tions promise to alleviate the problem.

In this work, we study a communication protocol
that aims at overcoming the problems associated with
sensor reachback. In particular, the spatial and tempo-
ral correlations among the measurements of the sen-
sor nodes are exploited by employing an adaptive fil-
ter at each node that tries to predict the actual mea-
surement using past measurements acquired from its
neighbors. The sink node, keeps an exact replica of
the filters that run on each sensor node. When a sensor
node records a new measurement, it computes the pre-
diction error. If the prediction error is small enough
(i.e. below a predefined threshold) the node sends the
output of its filter to its neighbors, so that they can
use this value as input for the prediction filters they
operate. In the opposite case, i.e., when the predic-
tion error is not that small, the node updates its fil-
ter (i.e. using an adaptive algorithm such as the LMS
or the RLS) and sends its actual measurement to its
neighbors. In this case, the neighbors will transmit
that measurement to the sink node in a cooperative
fashion, using a 2 step procedure: At the first step, a
number of collaborating sensor nodes exchange their
data, whereas in the second step all the collaborat-

ing nodes simultaneously transmit to the sink node,
thus forming a virtual Multiple Input Single Output
(MISO) channel, which is known to result in energy
savings as compared to the Single Input Single Output
(SISO) case (Cui et al. 2004).

The new technique has been tested extensively via
both simulated and real experimental data and it turns
out that it may offer considerable savings in transmit-
ted energy. Furthermore, the appropriate selection of
cooperating sensor nodes is of great importance.

The remainder of this paper is organized as fol-
lows. In Section 2, the problem formulation is given.
The proposed protocol is explained in more detail in
Section 3 and possible extensions discussed. The re-
sults obtained by applying the protocol on real ac-
celeration measurements from the Canton Tower in
China during an earthquake are presented in Section
4. Section 5 concludes the paper.

2 FORMULATION OF THE PROBLEM

Let us consider a dense wireless sensor network con-
sisting of N nodes, deployed in a civil structure that
we wish to monitor. Consider also that node n (n =
1,2 . . . ,N ) has Nn neighbors, in the sense that they
are close enough to node n so that wireless communi-
cation with low power can be accomplished. We will
denote the neighbors of node n as kn,1, kn,2, . . . , kn,Nn .
Each sensor node n, at discrete time t, acquires the
measurement yn,t which is related to an event that
takes place in the area where the wireless sensor net-
work has been deployed. Define also the vectors of m
past measurements of each sensor node n as

yn,t = [ yn,t−1 yn,t−2 · · · yn,t−m ]
T
,

n = 1,2, . . . ,N .
(1)

Also, let us define the stacked vectors

un,t =
[

yT
n,t yT

kn,1,t
yT
kn,2,t

· · · yT
kn,Nn ,t

]T
,

n = 1,2, . . . ,N ,

(2)

that represent the past m measurements of all sensor
nodes in the neighborhood of node n. Consider now
the correlation matrices defined as

Rn = E[un,tuT
n,t] , n = 1,2, . . . ,N . (3)

Clearly, if the matrices Rn are diagonal, the sensor
measurements within all neighborhoods are uncorre-
lated. In contrast, if the matrices Rn are only block-
diagonal with block size m, the measurements are
correlated in time but spatially uncorrelated. In this
work, we will focus on the general case where Rn are
of a general form, implying that the sensor measure-
ments are correlated both in time and in space.
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Figure 1: Each of the sensors is assigned its own time-slot to transmit, in a TDMA fashion. Furthermore, each time-slot is divided
into two sub-slots. During the first sub-slot of duration TA, each sensor n transmits to its kn neighbors. During the second sub-slot of
duration TB , node n and its neighbors transmit to the sink node in a cooperative fashion.

3 A TDMA BASED COOPERATIVE PROTOCOL

3.1 Predictors and correlation of measurements

Due to the nature of the observed phenomenon
the measurements’ process yn,t is commonly a pre-
dictable one, at least to some extent. Assuming the
process to be stationary, the predictor can be realized
as a linear filter with optimal coefficients obtained by
minimizing the mean-squared error between the mea-
surement yn,t and its predicted value.

However, in most real world applications the ob-
servation processes are non-stationary since their sta-
tistical characteristics are changing in time. As a
result, the optimal coefficients of the predictor are
changing in time as well. In order to track these
changes, a practical approach is to iteratively calcu-
late them by updating previous filter coefficients as it
is done in adaptive filters (Sayed 2008).

In this work, it is also of interest to consider the
dependence among the processes of acquiring mea-
surements in a certain neighborhood of node n. Ac-
cordingly, the prediction filter at node n should pro-
vide the predicted value of an actual measurement
taking into account its own past measurements as well
as the past measurements of other nodes to which
node n is spatially correlated with.

3.2 Simple cooperative TDMA protocol

Let us consider now a straightforward cooperative
communication protocol for the problem at hand, in
which correlation among the measurements acquired
by the nodes of the WSN is not taken into account.
According to this protocol, each sensor node is as-
signed its own time-slot in order to transmit infor-
mation, in a Time Division Multiple Access (TDMA)
fashion. Cooperative communication can be incorpo-
rated into this protocol, by dividing each time-slot
into two sub-slots as depicted in Figure 1. During the
first sub-slot of duration TA, each sensor n transmits
its estimated (or observed) value to its kn neighbors.
During the second sub-slot of duration TB, node n and
its neighbors transmit to the sink node in a cooperative
fashion. In such a scenario, both the Amplify and For-
ward (AF) as well as the Decode and Forward (DF)
methods (Hong et al. 2007) can be adopted.

3.3 Cooperative TDMA exploiting correlation

Consider now an extension of the aforementioned
protocol, where the correlation of the measurements

is taken into account. Since the measurements are cor-
related in time and in space, the idea of using past
measurements from nearby sensor nodes in order to
predict new measurements seems well justified. This
fact can be used to save some of the transmissions
to the sink node, in the case where the sink node
can itself predict the required measurements within
some predefined accuracy. Thus, let each sensor node
n keep a time varying prediction filter fn,t as well as a
data vector

ũn,t =
[

ỹT
n,t ỹT

kn,1,t
ỹT
kn,2,t

· · · ỹT
kn,Nn ,t

]T
, (4)

so that the output of the filter, defined as

ŷn,t = fTn,t · ũn,t (5)

is an approximation of the actual measurement yn,t
obtained by sensor n at time t. In the above expres-
sions, we have used the vectors

ỹn,t = [ ỹn,t−1 ỹn,t−2 · · · ỹn,t−m ]
T
,

n = 1,2, . . . ,N .
(6)

to represent approximate versions of the past m mea-
surements obtained by sensor n. Thus, vectors ũn,t

and fn,t have dimensions m · kn × 1. Let us now de-
fine a binary variable bn,t according to the prediction
error, as

bn,t =


0 if |ŷn,t − yn,t| ≤ e

1 if |ŷn,t − yn,t| > e
, (7)

where e denotes a small positive constant. The ap-
proximate measurements ỹn,t are defined as,

ỹn,t =


ŷn,t if bn,t = 0

yn,t if bn,t = 1
. (8)

Based on the above definitions, the protocol of each
sensor node n can be seen in Table 1. At a time in-
stant t, each sensor acquires its new measurement yn,t
and starts a synchronized loop to track the N time-
slots that will follow. As seen from Table 1, node n
is active in two cases: (a) When the current slot s is
equal to its index n, and (b) when the current slot s
is equal to the index of any of its neighbors. In case
(a), the node computes the output of its prediction fil-
ter and compares it to the actual measurement yn,t.
Thus, it computes the binary variable bn,t that deter-
mines whether the prediction was accurate or not. In



Table 1: The protocol executed by the sensor node n

Initialize fn,0, ũn,0 and e
For t = 0 to +∞

Acquire the measurement yn,t
For s = 1 to N

If s = n then
ŷn,t = fTn,tũn,t

bn,t =

{
0 if |ŷn,t − yn,t| ≤ e

1 if |ŷn,t − yn,t| > e

ỹn,t =

{
ŷn,t if bn,t = 0

yn,t if bn,t = 1
If bn,t = 1

Update the prediction filter to fn,t+1 (use yn,t)
End
Update ũn,t+1 using ỹn,t
Send ỹn,t and bn,t to the neighbors (TA sub-slot)
If bn,t = 1

Send ỹn,t to the sink (TB sub-slot)
End

Elseif s ∈ {kn,1, kn,2, . . . , kn,Nn
}

Listen for ỹs,t and bs,t (TA sub-slot)
Update ũn,t+1 using ỹs,t
If bs,t = 1

Send ỹs,t to the sink (TB sub-slot)
End

Else
Sleep(TA + TB seconds)

End
End

End

the case where the prediction was not accurate, the
prediction filter is updated using an adaptive algo-
rithm (such as the LMS or the RLS), and the value
yn,t as desired response. The sensor then computes
ỹn,t, which is either the output of the prediction filter
(accurate prediction) or the actual measurement (in-
accurate prediction). Thus, sensor n updates its input
vector ũn,t+1 and sends ỹn,t and bn,t to its neighbors.
Finally, ỹn,t is sent to the sink node only if the predic-
tion was inaccurate, otherwise the sink node is able
to compute ỹn,t using a prediction filter. In case (b),
i.e. when a neighbor of n is active, node n listens for
the transmitted values ỹs,t and bs,t. It then updates its
input vector ũn,t+1 with the received value ỹs,t and, in
the sequel, helps its neighbor transmit to the sink by
relaying ỹs,t if bs,t was 1.

The protocol followed by the sink node is depicted
in Table 2. At each time instant, the sink node also
executes a loop so as to track the N time-slots, in
a synchronized fashion. For the first TA seconds of
each slot, the sink node is inactive because sensor-to-
sensor communication takes place. At the following
TB seconds however, the sink node is receiving the
measurement ỹs,t of the node assigned to the current
slot. Of course, in the case where the prediction at
node s was accurate, such a message will not be trans-
mitted. Thus, the sink node must implement a proce-
dure to detect such “empty” messages. The result of
the detection process is a binary variable b̂s,t which
will be equal to bs,t in the case where the detection is
correct. In the sequel, the sink node is able to com-

Table 2: The protocol executed by the sink node

Initialize f(S)
n,0, ũ(S)

n,0 (n = 1,2, . . . ,N )
For t = 0 to +∞

For s = 1 to N
Sleep(TA seconds)
Listen for ỹs,t (TB sub-slot)

b̂s,t =

{
0 if ỹs,t was not detected

1 if ỹs,t was detected
If b̂s,t = 0

ỹ
(S)
s,t = f(S)T

s,t ũ(S)
s,t

Else
ỹ
(S)
s,t = ỹs,t

Update the prediction filter to f(S)
s,t+1 (use ỹs,t)

End
Update ũ(S)

s,t+1 using ỹ
(S)
s,t

For i=1 to Ns

Update ũks,i,t+1 using ỹ
(S)
s,t

End
End

End

pute ỹ
(S)
s,t , (that is, a copy of ỹs,t at the sink) either as

the output of a local prediction filter, i.e.,

ỹ
(S)
s,t = f(S)

T

s,t · ũ(S)
s,t , (9)

in the case where b̂s,t = 0 (accurate prediction) or by
setting it equal to the received measurement ỹs,t (in-
accurate prediction). In the case of inaccurate predic-
tion, the sink node must use the same adaptive algo-
rithm as the sensor s to update its local prediction fil-
ter for sensor s, so that the two filters are equal (of
course, if all channels are error free). Finally, the sink
node must update the input vectors of all the predic-
tion filters affected by ỹs,t, that is the prediction fil-
ter for node s and the local prediction filters of all its
neighbors.

It can be verified by the above, that in the case
where all channels are error-free, the reconstructed
sequences ỹ

(S)
n,t at the sink node satisfy the distortion

criterion

max
n,t

|ỹ(S)n,t − yn,t| ≤ e . (10)

3.4 Possible extensions

In the previous sub-sections the basic version of the
new method was presented. The method can be ex-
tended to several directions with relative pros and
cons. Below we provide some brief discussion of pos-
sible extensions. The corresponding techniques are
currently under investigation.

1) In the proposed protocol, in case that the pre-
dicted value is not accurate enough, the node trans-
mits the real measurement to the sink. However, since
the sink has an exact replica of the filter that run on
each sensor node, it may calculate the inaccurate pre-
dicted value by itself, as previously explained in Sec-
tion 3.3. Some power can be saved by sending only



Figure 2: The distribution of accelerometers along the tower height

this difference (the prediction error) instead of the
whole measurement.

The actual measurement and its predicted value are
highly correlated, so their difference has small varia-
tions and, therefore, in order to achieve a given distor-
tion fewer bits are required.

It is well-known by basic Rate-Distortion Theory
(Proakis and Salehi 2001) that for a zero-mean Gaus-
sian source with variance σ2 and with squared-error
distortion measure D, the rate-distortion function is
given by

R(D) =


1
2
log(σ

2

D
) 0 ≤ D ≤ σ2

0 otherwise
. (11)

Assuming that the prediction error and the mea-
surement signal are zero-mean Gaussian sources, for
a given distortion D ≤ σe, it can be easily shown that

Re = Ry −
1

2
log(

σ2
y

σ2
e

) , (12)

where Re, Ry represent required bits to send the
prediction error and the measurement signal, respec-
tively, while σ2

e , σ2
y are their variances.

This means that this modified protocol can achieve
performance levels compared to the original at lower
bit rates when the prediction errors are relatively
small. The gain is expressed as the second term in
(Eq. 12). However, providing the exact relation of this
gain to the distortion criterium is not straightforward
due to the following. Firstly, the distortion value influ-
ences the process of adaptive filtering and thus influ-
ences the prediction error and its variance. Secondly,

only the prediction errors greater than specific distor-
tion value are being transmitted which results in vari-
ance change of transmitted sequence comparing to the
variance of the sequence of all prediction errors.

Let us provide an example of a possible gain using
the measurements described in Section 4.2. In case
that sensor 10 cooperates with sensors 9 and 4, and
for the distortion value corresponding to sending the
measurement with 8 bits (Ry =8 bits), the gain de-
fined in Equation 12 equals to 4.1285 bits. Accord-
ingly, 50% of power could be saved by sending only
the prediction error (Re =4 bits) instead of the mea-
surement in this case.

2) Another approach to improving the protocol de-
scribed in Section 3.3 could be to use only appropri-
ately chosen delayed samples of a cooperating neigh-
bor and not all samples in between. For instance, the
highest cross-correlation between the measurements
of nodes 2 and 4 arises for delay = 45. Therefore,
it can be concluded that the adaptive predictor could
have significantly less coefficients and still to be able
to exploit the spatial correlation of a great delay. In or-
der to optimize the performance of this protocol, some
training period should be performed during forced vi-
bration testing.

3) Finally, the protocol can be improved by allow-
ing each sensor to update its own filter with the real
measurement regardless of distortion criteria, but still
to send the measurements to the sink and to also pe-
riodically send the filter coefficients to the sink only
if the prediction was inaccurate (i.e., large change in
input signal). In this scenario, the filter at the sink
node has slightly worse prediction abilities. Hence, it
is necessary to periodically receive the filter coeffi-
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Figure 3: The measured acceleration data sequences

cients changes from the sensor node in order to adjust
its own filter and satisfy the distortion criterion.

4 NUMERICAL RESULTS

Extensive experiments with both simulated and real
data have demonstrated the effectiveness of the pro-
posed method. In this section we present only some
indicative experimental results with real data since we
consider they are of more interest to the SHM com-
munity. More specifically, the real acceleration mea-
surements from the Canton Tower obtained during an
earthquake have been used in order to present differ-
ent gains of cooperation among the nodes.

4.1 The Canton Tower

The Canton Tower (the Guangzhou TV and Sightsee-
ing Tower) was constructed in 2010 in Guangzhou,
China. It has already attracted the interest of sev-
eral researchers (Casciati et al. 2009). It is a super-
tall structure with a height of 610m. On the top level
of the tower at height of 454m an antennary mast is
mounted with 164m height (Fig. 2).

The tower is a tube-in-tube structure; the outer tube
is made of steel and the inner one is a reinforced con-
crete tube. The two tubes are linked together by 36
floors and 4 levels of connection girders. The under-
ground part of the tower is 10m height and consists of
2 floors with plan dimensions of 167m by 176m. The
outer tube is shaped by concrete-filled-tube (CFT)
columns, spaced in an oval shape, inclined vertically,
and connected by hollow steel rings and braces. The
oval shape dimensions varies from 60m by 80m at

the underground level (altitude of -10m) to their min-
imum values of 20.65m by 27.5m at the altitude of
280m, and then they increase again to 40.5m by 54m
at the top level of the tube (altitude of 450m). The
oval shape of the top level is rotated 45 degrees hor-
izontally relative to that of the bottom level. The top
level plan is also inclined 15.5 degrees to the horizon-
tal plane. The inner tube shape is an oval with con-
stant dimensions along its height (14 m by 17 m), and
its centroid is not that of the outer tube. The thickness
of the tube varies from 1m at the bottom to 0.4m at
the top (Ni et al. 2009).

A SHM system consisting of over 600 sensors has
been designed and implemented by the Hong Kong
Polytechnic University for both in-construction and
in-service real-time monitoring of the tower (Bench-
mark 2008). The distribution of accelerometers along
the tower height is demonstrated in Figure 2. The dy-
namical response of the tower to an earthquake was
recorded by 17 sensors. The measured acceleration
data sequences obtained from several sensors are il-
lustrated in Figure 3 for six minutes of response dur-
ing an earthquake. The sampling frequency of the sig-
nal was 50 Hz.

4.2 Results

In order to illustrate the gain achieved by applying
the protocol, we examine the number of transmissions
toward the sink from a specific node as a function of
some distortion. For a given distortion, the number
of required transmissions from a certain node toward
the sink varies with reference to which node(s) are
selected for cooperation.

In Figure 4, a performance comparison for sensor
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Figure 4: Sensor 10 cooperating with one neighbor
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Figure 5: Sensor 10 cooperating with two neighbors

node 10 cooperating with a single neighbor is given.
It is clear that the best performance, in terms of power
saving, is achieved when node 10 cooperates with
node 9, which is rather expected since both sensors
are on the same floor (Fig. 2).

Figure 5 presents a performance comparison when
sensor node 10 cooperates with two neighbors. Coop-
eration with sensor nodes 9 and 4 gives better perfor-
mance compared to the case when it cooperates with
sensor nodes 12 and 6 and sensor nodes 12 and 16.

Therefore, exploiting spatio-temporal correlations
reduces power consumption of a sensor node. Further-
more, finding an optimal cooperating neighborhood
can be of great significance.

5 CONCLUSIONS AND FURTHER WORK

A TDMA based protocol for sensor reachback in a
SHM system has been described. The proposed pro-

tocol, takes into account the fact that sensor measure-
ments are correlated in space and time in order to re-
duce the amount of information bits needed to trans-
mit the measurements acquired by the sensor nodes
back to a sink node, within some prescribed distor-
tion e. Also, the protocol does not need to know the
statistics of the event being monitored by the wireless
sensor network, rather, these statistics are learned via
the use of adaptive algorithms. Furthermore, the pro-
tocol uses the idea of cooperative communication in
order to reduce the required transmission power. The
new technique has been tested extensively via real ex-
perimental data and it turns out that it may offer con-
siderable saving in transmitted energy. Furthermore,
the appropriate selection of cooperating sensor nodes
is of great importance.
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