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Abstract—In this paper, a supervised energy disaggregation
method is proposed. The appliances to be monitored, are
modelled by multi-state finite state machines. Each state of
an appliance is described by exactly one vector of power
consumptions from a carefully designed set of such vectors (called
atoms), that comprise a dictionary. The latter is constructed
during a training phase, where it is assumed that individual
power consumption signals are available. A clustering algorithm
is applied on overlapping patches extracted from the training
signal to select a fixed number of patches, i.e., the atoms of the
dictionary. Moreover, in the training phase, an appropriate state
transition matrix is constructed. During the operation phase,
where the actual disaggregation task is performed, a trellis, with
a reduced number of transitions, is used for the acquisition of
the disaggregated signals per appliance. Numerical results, using
the REDD dataset, are provided, in order to demonstrate the
effectiveness of the proposed method.

I. INTRODUCTION

Non-Intrusive Load Monitoring (NILM), also known as
energy disaggregation, refers to the problem of analyzing an
aggregate energy signal, such as the one coming from a whole-
home power monitor (smart meter), and extracting information
about different individual loads of the system [1]. In Fig. 1,
we demonstrate this idea. In particular, we consider a smart
meter that measures the total consumption (e.g. in terms of
power, current, etc.) of four devices, i.e. a lamp, an oven, a
computer screen and a fan. Based on this aggregate signal,
NILM tries to answer questions such as what is the individual
consumption of each device and to quantify the percentage of
consumption imposed by each device.

The usefulness of NILM has been already identified by
early works like [1]. For example, NILM can be used to
generate energy consumption reports, that can aid consumers
in following more energy efficient practices. Nowadays, the
appearance of the smart-grid vision [2] has led many countries
to start investing in the modernization of their power grids,
including the vast installation of (central) smart meters in
the (until recently passive) residential and commercial areas.
Moreover, there are many studies suggesting that high energy
efficiency and savings could be achieved if end-users became
aware, in detail, about their energy consumption profiles and
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Fig. 1. At home, an aggregate signal from four devices, is used as input to
the energy disaggregation block

received appropriate recommendations in real-time (e.g. [3]).
For the above reasons, NILM techniques have received a
renewed interest, and they are part of many current research
and innovation actions [4], [5], [6].

The existing methods, for NILM, comprise two distinct
tasks [7]; (a) a proper modeling of the individual appliances,
by extracting informative features, based on their typical
consumption behavior, and (b) derivation of an algorithm
capable of deciding which devices are active at a particular
time interval by utilizing information from an aggregate energy
consumption signal. The process of constructing informative
descriptions of the individual devices and, subsequently, dis-
aggregating the available energy signal, is a learning problem
that can utilize supervised or unsupervised methods. The
former methods, following an off-line initial training phase,
use known information about each device to be monitored.
For example, in [8], a sparse coding approach is adopted to
model each device by a set of “atom” signals which comprise
a dictionary. A similar approach is followed in [9] where both
the training and disaggregation phases are based on small
patches of the involved signals. In [10], a modified Viterbi
algorithm is proposed, for on-off devices, with complexity
which, due to the inherent sparsity of the involved transition
probability matrices, is linear with respect to the number of
the devices. For multi-state devices, [11] proposed a sparse
Viterbi algorithm that is able to disaggregate a larger number
of devices. In [12], device harmonics are utilized and an [1-



norm optimization problem is described for NILM, aiming
at identifying whether the devices are on or off in the time
interval of interest. In [13], a semi-supervised approach is
proposed where a general model, for each device, is adopted
and a training procedure is described for the inference of
the model parameters from the available aggregate signal.
In [14], an NILM technique that employs k-means-based
clustering and classification (using support vector machines),
is proposed. The training phase is based on either home-
specific or home-agnostic device data. For the latter, a generic
database with numerous device signatures is utilized.

Unsupervised methods, on the other hand, are applied di-
rectly on the aggregate signal and assume no prior knowledge
about the devices. In [15], four variants of a Hidden Markov
Model (HMM) are studied for modeling the data originating
from low frequency sampling. In [16], an additive factorial
HMM is adopted and, in particular, two models are considered;
for the total aggregate output and for the difference between
successive outputs. In [17], a classification of devices is
proposed that is based on their “power consumption units”
and working styles. Disaggregation of the signal is approached
through an event detection scheme that uses clustering. In [18],
a factorial HMM is adopted which is able to exploit informa-
tion regarding device interactions due to their connection to a
common underling electric circuit.

In this paper, a novel approach for solving the disaggrega-
tion problem, is presented. The method relies upon works like
[1] and [9] in the sense that it exploits properly some of their
advantageous aspects. More specifically, we adopt a multi-state
modeling, for each appliance, where each state is described by
a vector of power consumptions measured at subsequent time
instants (as in [9]), rather than a single measurement. However,
different from [9], where a so-called sparse subset selection
algorithm was employed for the training phase, we propose
a training method that relies on clustering. Finally, in order
to keep the computational complexity of the disaggregation
algorithm to a tractable level, we propose to suitably prune the
trellis - diagram which is computed during the training phase.
Finally, the method is evaluated using power consumption
signals from REDD [19].

In the following, first, the problem of energy disaggregation
is described in Sec. II. Then, in Sec. III, the proposed
technique is presented focusing on its training and normal
operation phases. In Sec. IV, the evaluation of the technique
is present where information is provided about the utilized
dataset, implementation issues and, lastly, the simulation re-
sults. Finally, Sec. V concludes the paper.

Notation: ()T denotes the transpose of a matrix. Vectors
and matrices are denoted with bold, small and capital letters,
respectively.

II. ENERGY DISAGGREGATION

A. Problem Formulation

Let us consider a set of K (home) appliances and their
respective power consumption signals yy[t], where k& denotes
the appliance index £k = 1,2,...,K and t = 1,2,...,T

represents discrete time. Furthermore, let us consider that the
measured, noisy, aggregate power consumption signal can be
written as,

ylt] = > ywlt] + wlt] , (1)

k=1

where w(t] denotes measurement noise and other inaccuracies
of the model. The objective of the energy disaggregation
problem is to estimate the energies Ej consumed by each
one of the K devices, where

T
Ekzzyk[t]kZLQ...,K, )
t=1

using the measured aggregate power consumption signal y[¢] in
the time interval [1, T'] and any available (a-priori) information
regarding the operation of the K appliances. Usually, in the
supervised version of the problem, the a-priori information
may be in the form of a set of so-called training signals yt]
for ¢ € [t1,t2], from power measurement devices that were
temporarily installed to monitor the consumptions of each
individual appliance.

B. Relevant prior work

In order to better explain the proposed disaggregation ap-
proach and, furthermore, to demonstrate the differences of our
method as compared to similar ones, we briefly mention here
the key points of such existing methods. In [1], it was proposed
to model each device as a finite state machine (FSM), where
each state corresponds to a specific power consumption. Thus,
given a set of models and an aggregate power consumption
y[t], the disaggregation problem at time ¢ can be written as

K

ylt] = > sk
=1

o,t o,t
(600, 50

)

5991 = arg min
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where S), is the set of all states for device k, each element
sy € Si is the respective power consumption and sgco’t)
is the optimal state for device k at time t¢. This approach,
known as the combinatorial optimization (CO) approach to
the disaggregation problem, suffers from high computational
complexity. In particular, given that |S;| = |S| for all
devices, the complexity of the CO approach is O(|S|¥).
Another drawback of the CO approach is that it does not, in
general, manage to discriminate between devices with states
that correspond to the same power consumptions, even though
these devices may have very different “energy footprints” in
time. Thus, approaches that utilize the time-structure of the
power consumption signals of each device have appeared in
the literature.

In [9], the proposed method consists of two phases; the first
one for training and the second one for the disaggregation
task itself. One key point, in both phases, is that the adopted
procedures rely upon small patches of the available signals
which leads to an online, real-time operation for the latter
phase. In more detail, in the training phase, it is assumed
that a consumption signal per device is available. From each



signal, patches (of length w) are extracted and they are used for
designing a corresponding dictionary that comprises a small
set of carefully selected patches, which capture the dynamics
(or different states) of the device. This set is determined
based on a sparse subset selection algorithm that selects the
most representative patches, which are capable of describing
the device consumption signal. The main drawback of this
approach is its high complexity (both in terms of compu-
tations and storage). When the dictionaries are determined,
the disaggregation phase is executed, again, on patches of the
aggregate signal. A minimization problem is defined based
on a cost function that consists of an /1-norm representation
error term and a regularization term that incorporates prior
information about the devices (e.g. the concurrent operation
of two devices). The solution selects one and only one patch
from the dictionary of each device. This fact provides a
connection to clustering-based dictionary learning methods
[20] that employ the simpler k-means algorithm during the
training phase.

III. THE PROPOSED APPROACH

In this section, the proposed method is presented. First, the
training procedure is described and, then, the disaggregation
approach that is adopted, is explained.

A. Training phase

The scope of the training phase is to compute a model
that explains the power consumption signal of a device. In
particular, we assume that the operation of the appliances
that are of interest to us, can be modeled by an FSM. Thus,
our scope is to compute a state diagram for each of the K
devices, given the “training” signals yy[t], for ¢ € [t1, to] that
we call the training time interval. In contrast to [1], where a
single power consumption was used to define each state, we
let each state correspond to a vector of w consecutive power
consumptions, and we call this vector an atom. This is similar
to the work in [9] where a dictionary is used to represent
the states of a device. This approach makes it possible to
discriminate among devices with states of similar powers, as
long as these devices have different behavior in intervals of
length w. Of course, considering that even consecutive signal
patches of length w of the signals y[t] will, in general,
vary significantly, then an increased number of states will be
required to accurately model these signals.

The first step, in the proposed learning procedure for device
k, is to use the signal yy[t] to construct a matrix

Y = [yrlti] yelts +1] -+ yefta —w+1]] , (@)

where the vectors yy[t] are defined as
T
ye[t] = [yelt] yelt +1] - . o
In other words, matrix Y, € Rv*x(L—wtl) [ — 5 — 1 +1
contains all the possible patches of length w that we can extract
from the signal y;[t] for t € [t1, t2].
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Fig. 2. Example atoms for a simple device that consumes 5 Watts at standby,
50 Watts during operation and when it operates it stays at this state for exactly
3 time instants
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Fig. 3. Example trellis diagram for the device of Fig. 2

In the sequel, we employ some clustering algorithm (e.g.,
the k-means algorithm) to compute N representative patches.
In particular, we compute

{Dg,ci} = Cluster (Y, N) (6)

where D, € R¥*Y is the matrix of centroids/representatives
and c; is a vector with L — w + 1 elements, defined as
T
ek = [ex[ta] exts +1] - -,

Crlte —w+1 (7

and ¢i[t] € {1,2,...,N} is the index of the corresponding
centroid/representative for patch yy[t].

Having computed matrix Dy, we have determined the
atoms of the IV states of the FSM. The required transition
probabilities can be estimated in a matrix Py, with entries

[pk]; ; = ?:_tlwl( ck[t] =i AND ¢t + 1] = j)
" L—-—w )

with I(-) an indicator function that returns one if its argument
is true and zero otherwise. Thus, the matrices Dy and Py
describe the finite state machine for appliance k.

To demonstrate the ideas of the training procedure described
in the previous paragraph, we provide a simple example.

®)



Consider a simple appliance that consumes 5 Watts at standby
and 50 Watts during operation. The device can start operating
at any time, but when it starts it will operate for exactly 3 time
instants. Furthermore, device activations occur at time instants
that are more than 5 time instants apart. Assuming that we
measure the power consumption signal of this device in the
absence of measurement noise, and by applying our training
procedure, the resulting atoms (i.e., columns of matrix D) are
shown in Fig. 2. Also, the resulting trellis diagram, drawn with
the assumption that the device starts at standby, is shown in
Fig. 3. Note that even though the device has only two distinct
power consumptions, 6 states are required to accurately model
this device when w = 3. Also, it is interesting to note that the
resulting trellis diagram is sparse, in the sense that each of the
6 states is followed by a limited number of states.

B. Operation phase

After the training phase has been completed for all K
devices, we can construct a super-trellis described by a matrix
D € R¥*N" with columns all the possible sums of atoms,
where in each sum exactly one atom per device (i.e., one
column from each Dy) is used, and the associated matrix
P € R¥N"*N™ that holds the super-state transition proba-
bilities. This approach is equivalent to the so-called factorial
Markov model, in which a number of Markov models operate
independently in parallel and we observe only the sum of their
outputs, which corresponds to a super-state [16]. In this work,
in order to reduce the computational complexity, we assume
that at time ¢ the correct super-state has been detected and
thus, we only search for the next super-state by examining only
transitions that begin from the current state. Furthermore, we
suitably prune the individual trellis diagrams of each device,
by keeping only the N’ most probable transitions. Thus, the
computational complexity of this scheme is O (N 1K ) which
is significantly smaller than O (N*¥) when N’ << N.
Remark: Tt is pointed out here that the particular algorithm,
which is adopted for the execution of the operation phase, is
actually independent of the training procedure that is followed.
In essence, the particular supervised training, where a device-
specific dictionary is determined, can also be utilized, as is, by
a disaggregation algorithm like the one that is proposed in [9].
This remark is interesting because the same training procedure
can be tailored for two fundamentally different approaches that
are followed in the relevant literature.

IV. NUMERICAL RESULTS
A. Dataset for energy disaggregation

In recent years, a number of datasets that are tailored, among
other, for the evaluation of NILM techniques, are publicly
available to the research community. Two examples are the
Reference Energy Disaggregation Data-set (REDD, [19]) and
the Dutch Residential Energy Data-set (DRED, [21]). The
interested user is referred to [21] for more examples.

In this work, the proposed disaggregation technique is eval-
uated on REDD [19]. In general, this data-set contains power
consumption curves for the two power mains and individual
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Fig. 4. Actual and reconstructed power consumption signals for the refriger-
ator

circuits, called channels, of six different houses. For the power
mains signals, the sampling frequency is about one sample
per second, while, for the individual circuits, the frequency is
about one sample every 3 seconds. In Fig. 4, a segment of
the power consumption signal of the channel “Refrigerator”,
from the second house, is presented, along with its estimated
reconstruction curve.

The consumption signals, for each channel, correspond to
a number of days, as can be concluded from the UTC time
stamps that were recorded along with the samples. For the
evaluation needs in this work, two segments are extracted
from each channel signal; called training and testing segments,
respectively. The first one is used for the training phase, as
dictated in Sec. III-A, while both are used for evaluating the
performance of the proposed technique, as explained in Sec.
III-B. It is noted here that the aggregate signal is assumed
for simplicity to be produced as the sum of the corresponding
segments (i.e. either the training or the testing ones) of all
channels participating in the disaggregation task. Moreover,
the channels are not separated into two groups (with respect
to the measurement of the two mains in REDD). Thus, it is
assumed that all channels are supported by the same main
power supply of the house.

B. Implementation issues

In our experiments, we use the low-frequency dataset for
“house 2” of the REDD database. This dataset contains power
consumption measurements for 9 devices (thus, K = 9) sam-
pled at a rate of one measurement in (about) every 3 seconds.
We use the first seven days for training, that correspond to
151754 samples. We perform clustering on the matrices Y,
for various values for the length w of the patches and for the
number of centroids/representatives N. For clustering, we use
the K-means algorithm with random initial centroids. As this
approach is sensitive to initialization, we execute the algorithm



a number of times - each trial with a different initialization,
and we use two metrics to select one of the resulting trellises:

I The first metric that we used to select one of the outputs
of the K-means algorithm was the minimum mean square
error, in the sense that these centroids better represent the
training patches. We call this approach Scheme I.

II The second metric that we used takes into consideration
the subsequent pruning of the trellis diagram. More
specifically, for each trial we compute the corresponding
matrix of transition probabilities, and in the sequel we
compute the sum of the entries of this matrix that would
be set to zero if pruning was applied. We select the output
of the algorithm with the minimum such sum. We call this
approach Scheme II.

After training, we use the following three days for testing
(i.e. subsequent 68580). In our experiments, we prune the
computed trellis diagrams of all the devices by considering
only the N’ = 3 most probable transitions from each state to
the states of the next time instant. Thus, the disaggregation
algorithm examines 3° super-states at each time instant (i.e.,
39 columns of matrix D, which has a total of N9 columns,
and in general N > 3), and selects the one that achieves
the minimum squared error from the respective patch of the
aggregate power signal.

C. Results

To evaluate the performance of the proposed method, we
conducted some computer experiments. In particular, we ex-
amined the cases where w is set equal to 1, 5, 10 and 20. Also,
we examined the case where N = N’ = 3, i.e., no pruning
is performed, and the case where N = 10 where pruning to
N’ = 3 transitions is performed. In this case, we examine both
Scheme I and Scheme II. For all the above cases, we compute
the disaggregation consumption metric, which is given by [8],

Zi{:l min (Ek, Ek)
ZkK:l Ey

and the disaggregation accuracy metric, which is given by [9],

C ) )

K -
3 Dteituwt12041,.3 2okt 19k[t] — yrlt]l

A=1
2Zte{1,w+1,2w+1,.._} y[t]1

, (10)

where Fj is the actual energy consumed by device k at the
examined interval, and E}, is the estimated energy consumed
by device k, where both energies are normalized to have the
same sum. Moreover, y,[t], §,[t] and y[t] are the actual and
estimated patches for device k£ and the patch for the aggregated
signal, respectively. Fig. 5 summarizes our results for the two
performance metrics. The main observations that we can make,
are summarized in the following:

o Scheme II manages to achieve better performance than
Scheme I, for small values of w. For greater values of w,
Scheme I obtains similar or better performance.

o The best disaggregation accuracy is about 60%. This is an
expected results because, at the operation phase, a trellis-
based approach is used that is similar to FHMMs and a
similar outcome has been reported in [9].

o Although the best A-values are about 60%, the best
C' value is about 85% which provides a different view
regarding the efficiency of the method. As reported in
[22], [23], the task of disaggregation is highly related to
the targeted application and the questions that need to
be answered. For example, if the percentage of power
consumption per device is desired then the C' metric is
more appropriate than the A metric that represents the
accuracy of reconstructing the actual signal of a device.

Finally in Fig. 6 we demonstrate the resulting energy
percentages per device, as estimated by the proposed method
for the cases with w = 20, as well as the actual energy
consumptions. We note that for this specific experiment, the
disaggregation problem is solved quite accurately.

V. CONCLUSIONS

In this paper, a supervised disaggregation method was pro-
posed that models the states of an appliance, using a dictionary
designed by employing a clustering algorithm. A trellis-based
algorithm is used for the disaggregation step, that operates
on a properly pruned diagram, for complexity reasons. Using
consumptions signals from REDD, the applicability of the
proposed method was demonstrated. However, although the
two schemes reduce the number of transitions, complexity still
remains prohibitive for houses with more (than 9) appliances
to be monitored (as is the case with other houses in REDD).
Moreover, a better understanding of the intertwining of the key
parameters of the method (i.e. N, N’, w) is required either by
theoretical arguments or by appropriate simulated scenarios.
The above two points dictate our future research efforts for
this problem.
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