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Abstract—We study a problem in which the nodes of a
network, each with different data, are interested in computing
a common dictionary that is suitable for the efficient sparse
coding of all their data. To this end, distributed processing
is employed, that is, the nodes merge local and neighboring
information. We formulate this as a convex feasibility problem,
and propose a suitable distributed algorithm for obtaining a
solution that employs projections onto convex sets. A fast method
for computing the involved projection operations is also given.
The proposed approach allows the associated convex sets to
be updated at every iteration of the algorithm, thus resulting
into a faster agreement of the nodes in a common dictionary.
Simulation results are provided that demonstrate the effectiveness
of the proposed scheme in computing a common dictionary, in a
scenario where the data of the nodes are significantly different
and a second scenario, in which the nodes have the same data.

I. INTRODUCTION

The description of signals using sparse representations is
an active area of research [1], [2] and many applications
employ this type of modeling, such as medical imaging, audio
/ video denoising and compression [3]. A notably interesting
approach that is often adopted, so-called “dictionary learning”,
leads to over-determined linear models for the available data
[4]. In particular, these approaches aim to determine a set
of representative signals (or, else, atoms) that constitutes a
dictionary. Based on this dictionary, each desired signal is
modeled as a linear combination of only a small number of
atoms leading to a corresponding sparse representation.

In recent years, due to the development of small devices,
either mobile or static, with communication and computing
capabilities, new data processing possibilities have been cre-
ated. Being able to set-up networks and carry out tasks of
common interest, these devices cooperate and process data in
a distributed fashion [5], instead of a centralized one which
relies on a central node. This way, increased robustness and
scalability are achieved as, on one hand, there is no single
point of failure and, on the other hand, energy and com-
munication resources are only required for local interactions
and processing. Although distributed algorithms were initially
developed for estimation problems (e.g., in power-grids [6]),
nowadays, such algorithms are also available for the dictionary
learning problem.
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Generally speaking, the distributed algorithms for dictionary
learning, are devised for a network of nodes (e.g., micro-
phones, cameras, etc.) that acquire observations originating
from the same phenomenon. Furthermore, it is assumed that
these observations can be sparsely represented based on a
common dictionary. These algorithms usually have two main
parts. The first one is focused on the processing of local
observations while, in the second part, the devices exchange
relevant information (e.g., the actual local dictionaries) and
attempt to agree upon a common, global dictionary.

In the following, some representative works will be briefly
discussed. In particular, [7] proposes a diffusion-based, adap-
tive dictionary learning approach in which the devices adapt
their local copy of the dictionary using the so-called adapt-
then-combine strategy. In [8], [9], the desired dictionary is
assumed to be known only partially by each device and
a representation error is exchanged, minimizing the com-
munication overhead while maintaining the privacy of the
local data of the devices. In [10] and [11], two consensus-
based, distributed algorithms are proposed. In the first one,
the alternate direction method of multipliers is utilized among
the devices for acquiring the common dictionary. In the
second one (and also in [12] where a more extended version
can be found), a distributed version of the centralized K-
SVD algorithm is proposed, while convergence analysis of
the algorithm is presented in [13]. Additionally, in [14], a
consensus-based, distributed algorithm for general inference
/ learning problems is proposed which can also be applied for
the problem of dictionary learning. An online algorithm has
appeared in [15], where the recursive least squares algorithm is
employed. Other online algorithms can be found in [16] and
[17], which are specifically tailored for classification tasks,
concerning object recognition in natural images and fossil
pollen grains in microscopy images, respectively. In [18],
a distributed algorithm is described by proposing an adapt-
align-combine strategy that takes into account an inherent
permutation ambiguity concerning the atoms of the dictionary.

In this paper, a novel distributed, dictionary learning ap-
proach is proposed for a network of devices that have, in
general, different observations (e.g., a network of cameras with
different points of view). In order to agree upon a common,
global dictionary, instead of using gradient-based techniques
such as the ones utilized in the aforementioned works, the



devices are associated with individual convex sets and they
project on those sets the local dictionaries of neighboring
devices in an incremental (i.e., sequential) manner. A fast
technique is also determined for the Projection Onto Con-
vex Sets (POCS) operation. Moreover, the approach updates
the associated convex sets per device in every iteration for
increased performance. For evaluation purposes, simulation
results are presented for a network of five nodes that utilize
either different or the same images. The results demonstrate
the effectiveness of the proposed approach.

II. PROBLEM FORMULATION

We consider a network of N nodes, where each node
n ∈ N = {1, 2, . . . , N} has obtained some data that we
represent by the matrix Y n ∈ Rp×qn , n ∈ N , where p
is the dimension of the data samples and qn is the number
of observed samples at node n. For example, each column of
Y n could represent a small portion of an image (known as an
image patch), in which case p is the number of pixels of the
patch and qn is the number of patches at node n. In general, the
nodes are interconnected as described by a connected graph
G(V, E), where V = N is the set of vertices and E is the set
of edges.

We are interested in the computation of a so-called dictio-
nary matrix D ∈ Rp×K , p < K, common for all nodes, so
that

Y n ≈DAn, ∀ n ∈ N , (1)

with the additional requirement that the respective matrices
An ∈ RK×qn are sparse, in the sense that the number of
non-zero elements on each column is small. Furthermore,
we require that each column dk, k = 1, 2, . . . ,K of D has
unit length. The scope of distributed dictionary learning is
to compute the required matrix D in a distributed fashion,
where the nodes exchange local messages with respect to the
graph G(V, E) and, thus, there is no need for a so-called
fusion-center that gathers all the required data and executes
a centralized algorithm.

In this work, we consider that each node n at discrete
time instant t has computed the estimates D(t)

n and A(t)
n . For

example, such estimates could be the result of some centralized
dictionary learning and sparse approximation algorithm [4]
that was applied locally at node n, using local data Y n. In the
following, we develop a proper distributed algorithm to make
the nodes agree on a common D.

III. POCS-BASED DISTRIBUTED DICTIONARY LEARNING

Let us consider that, at some discrete time instant t, the
representation error v(t)n for the data of node n is given by the
following equation, based upon the Frobenius norm

v(t)n =
∥∥∥Y n −D(t)

n A(t)
n

∥∥∥2
F

. (2)

Furthermore, for each node n, we define the set

S(t)n = {D ∈ Rp×K :
∥∥∥Y n −DA(t)

n

∥∥∥2
F
≤ v(t)n } , (3)

that is, the set of all dictionary matrices for which the
representation error (given A(t)

n ) is not increased. This set is
convex and the following lemma provides a proof.

Lemma 1: The set S(t)n is convex.
The set S(t)n is convex if the condition

∀D1, D2 ∈ S(t)n ⇒
(
ζD1 + (1− ζ)D2

)
∈ S(t)n (4)

is valid for any ζ ∈ [0, 1].
Proof: For any dictionaries D1, D2 ∈ S(t)n , the inequalities

∥Y n −D1A
(t)
n ∥2F ≤ v(t)n , (5)

∥Y n −D2A
(t)
n ∥2F ≤ v(t)n , (6)

hold according to (3). Multiplying (5), (6) with ζ2 and (1−ζ)2,
respectively, the following inequalities are also true.

ζ2∥Y n −D1A
(t)
n ∥2F ≤ ζ2v(t)n ≤ ζv(t)n , (7)

(1− ζ)2∥Y n−D2A
(t)
n ∥2F ≤ (1− ζ)2v(t)n ≤ (1− ζ)v(t)n . (8)

Finally, by adding up (7), (8), it can be shown that

∥Y n −
(
ζD1 + (1− ζ)D2

)
A(t)

n ∥2F ≤ v(t)n , (9)

which proves the lemma.

Based on the above, we define the convex set C(t) as the
intersection of the individual convex sets S(t)n , given by

C(t) =
∩
n∈N
S(t)n ⊂ Rp×K . (10)

In the case where the set C(t) is not empty, any matrix D(t) ∈
C(t) will satisfy the requirements of all nodes. Thus, we can let
the nodes compute such a matrix to enforce consensus among
them. However, in order to also cover the case in which the
set C(t) might be empty, we propose to enforce consensus by
setting

D(t) = argmin
D

∑
n∈N

∥∥∥D −PS(t)
n
(D)

∥∥∥2
F

, (11)

where PS(t)
n
(D) is the orthogonal projection of D onto S(t)n .

It can be easily verified that (11) includes also the case of
non-empty set C(t), since for any D(t) ∈ C(t), equation (11)
attains zero cost. The optimization problem in (11) can be
solved by adopting an approach that is inspired by the POCS
method [19], [20]. Furthermore, the adopted approach can be
implemented in a distributed fashion, similarly to the method
shown in [21], [22], for other estimation problems.

After organizing the nodes of the network into a circle,
each node n participates in an iterative update algorithm by
computing, at iteration i, an estimate D(t,i)

n of the global
dictionary. In particular,

D(t,i)
n ← D̂

(t,i)

n + λ
(
PS(t)

n

(
D̂

(t,i)

n

)
− D̂

(t,i)

n

)
, (12)

where D̂
(t,i)

n is an estimate computed by the previous node
in the circle and received by node n, and λ is a properly



selected constant (in more detail, a properly selected relaxation
sequence can be used [19], [20]).

The most demanding operation in (12) is the involved
projection operation. In the following subsection, we derive
an algorithm that computes the required orthogonal projection
efficiently.

A. Efficient computation of the projection operator

For the computation of the projection PS(t)
n

(
D̂

(t,i)

n

)
in

(12), the following optimization problem must be solved

PS(t)
n

(
D̂

(t,i)

n

)
= argmin

D

∥∥∥D − D̂
(t,i)

n

∥∥∥2
F

s.t. ∥Y n −DA(t)
n ∥2F − v(t)n ≤ 0 . (13)

We can use the method of Lagrange multipliers to transform
this problem into an unconstrained one. In particular, the
Lagrangian for our problem is given by

L(D, µ) =
∥∥∥D − D̂

(t,i)

n

∥∥∥2

F
−µ

(
∥Y n −DA(t)

n ∥2F − v(t)n

)
, (14)

where µ is our Lagrange multiplier. Setting the partial deriva-
tive of the Lagrangian function with respect to D equal to
zero, yields

D =
(
D̂

(t,i)

n − µY n(A
(t)
n )T

)(
I − µA(t)

n (A(t)
n )T

)−1

, (15)

where I denotes the identity matrix and ()T is the matrix
transpose operator. Of course, setting the partial derivative
with respect to µ equal to zero, yields the equation of the
constraint. Unfortunately, substituting (15) into the equation
of the constraint does not lead to a closed formula for µ.
However, taking into account the fact that the projection of
any point that lies outside a convex set onto that convex set
is unique, the equation can be solved for µ as follows,

∥Y n−
(
D̂

(t,i)

n − µY n(A
(t)
n )T

)
· · ·

· · ·
(
I − µA(t)

n (A(t)
n )T

)−1

A(t)
n ∥2F − v(t)n = 0 , (16)

using (for example) the bisection method. The resulting unique
µo can then be inserted into equation (15) to compute the
projection. Simulation results demonstrated that this procedure
is much faster than solving the original problem (13) using the
standard CVX solver. It can easily be verified that the involved
projection operations might violate the requirement for having
dictionaries with unit length atoms. However, we can easily
normalize the resulting dictionaries so as to have unit length
atoms, by also scaling the respective rows of the associated
sparse approximation matrices.

B. A heuristic modification for accelerating POCS

In this paragraph, departing from the standard POCS litera-
ture, we propose a modification in which the involved sets are
updated from iteration to iteration. In more detail, after node n
has applied (12) to update its dictionary estimate, it normalizes
this estimate to have unit length. We denote the normalized
dictionary as D̄

(t,i)
n . Then, it also updates its local sparse

Input: Data matrix Y n , next node index n′ , relaxation parameter λ ,
total POCS iterations I , knowledge if node is leader or not , sparse
approximation algorithm F1(·) , dictionary update algorithm F2(·)

1: Initialize D̄
(0,I)
n with unit length atoms

2: Initialize A
(0,I)
n

3: for t = 1 to ∞ do
4: A

(t,0)
n ← F1

(
D̄

(t−1,I)
n ,A

(t−1,I)
n ,Y n

)
5: D

(t,0)
n ← F2

(
D̄

(t−1,I)
n ,A

(t,0)
n ,Y n

)
6: if Node n is the leader then
7: Send D

(t,0)
n to the next node n′

8: end if
9: for i = 1 to I do

10: Listen until D̂
(t,i)
n is received from previous node

11: D
(t,i)
n ← D̂

(t,i)
n + λ

(
P
S(t,i)
n

(
D̂

(t,i)
n

)
− D̂

(t,i)
n

)
12: Set D̄(t,i)

n as the atom-normalized D
(t,i)
n

13: Send D̄
(t,i)
n to the next node n′

14: A
(t,i)
n ← F1

(
D̄

(t,i)
n ,A

(t,i−1)
n ,Y n

)
15: v

(t,i)
n ←

∥∥∥Y n − D̄
(t,i)
n A

(t,i)
n

∥∥∥2
F

16: end for
17: end for

TABLE I
THE PROPOSED DISTRIBUTED DICTIONARY LEARNING ALGORITHM AT

NODE n

approximation matrix and the associated error. In particular,
the following equations are used

A(t,i)
n ← F1

(
D̄

(t,i)
n ,A(t,i−1)

n ,Y n

)
(17)

and
v(t,i)n ←

∥∥∥Y n − D̄
(t,i)
n A(t,i)

n

∥∥∥2
F

, (18)

where A(t,i)
n and v

(t,i)
n are the iteration dependent version of

A(t)
n and v

(t)
n , that define the iteration dependent convex set

S(t,i)n . Finally, as mentioned also in the following subsection,
F1(·) is any proper sparse approximation algorithm (e.g.,
the Matching Pursuit - MP - [23], the Orthogonal Matching
Pursuit - OMP - [24], the Focal Underdetermined System
Solver - FOCUSS - [25]).

Of course, the modified POCS - inspired algorithm loses the
convergence guarantees of the original scheme. However, it
was experimentally observed that the proposed heuristic algo-
rithm reaches a steady state significantly faster than the orig-
inal scheme. Furthermore, in all the experiments conducted
(with 0 < λ < 1) we observed that the algorithm always
converges, although an actual analytical proof is missing.

C. The proposed algorithm

In this paragraph, we summarize the proposed distributed
dictionary learning algorithm, outlined in Table I. We assume
that the nodes of the network are equipped with a sparse
approximation algorithm F1(·) (as the ones mentioned in the
previous paragraph) and a dictionary update algorithm F2(·)
(e.g., the Method of Optimal Directions - MOD - [26], the
K-SVD [27]) to process their local data. After the execution
of one step of F1(·) and F2(·), the nodes use the previous
POCS - inspired iterative approach to compute a common
dictionary. In particular, we assume that, the nodes of the



Fig. 1. The images used for generating the input data at the five nodes considered in the simulations

0 20 40 60 80 100 120 140 160 180 200
10

15

20

25

30

35

Time Index t

R
e
p
re

s
e
n
ta

ti
o
n
 E

rr
o
r 

fo
r 

A
ll 

D
a
ta

 

 

Centralized Dictionary Learning

Node 1, Working Alone

Node 2, Working Alone

Node 3, Working Alone

Node 4, Working Alone

Node 5, Working Alone

Proposed POCS−Based Distributed Dictionary Learning

Fig. 2. Simulation results when the nodes have different data
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Fig. 3. Simulation results when the nodes have the same data

network have been organized into a circle, and one of them
has been labeled as the leader node. The leader node starts the
POCS iterations. A number of I such iterations are performed,
where at each iteration the projection of the dictionary received
from the previous node into the local convex set is computed.
Thus, our proposed distributed dictionary learning algorithm
employs projections onto convex sets, and allows for these
convex sets to be time-varying.

IV. SIMULATIONS

We consider a network with 5 nodes, where the data at each
node is created using some real world image. Each image is
decomposed into non-overlapping patches of 8×8 pixels. The
images used by the nodes can be seen in Fig. 1, and their
common size is 192 × 192 pixels. All nodes use the OMP
algorithm, in place of algorithm F1(·) (with a sparsity level
equal to 10) for performing the sparse approximation steps,
and the K-SVD algorithm, in place of algorithm F2(·) for
performing the dictionary update steps. We consider dictio-
naries with K = 128 atoms, thus the size of the dictionaries
is 64× 128.

In the following we demonstrate the performance of the
proposed algorithm against a centralized scheme that uses the
K-SVD / OMP algorithms and the performance achieved when
each node works alone, i.e., when no consensus is enforced.
In all cases, the representation error for all the data of the
nodes is the adopted performance metric (global error), which
is plotted against the time index t of the algorithms. In more
detail, Figures 2 and 3 show

e(t)n =
∥∥∥Y −D(t)

n A(t)
n,g

∥∥∥2
F

,

where Y = [Y 1 Y 2 · · ·Y 5] is the matrix of all data, D(t)
n

is D(t,I)
n for the cases where the nodes cooperate and D(t,0)

n

for the cases where the nodes work alone, and finally A(t)
n,g

is the sparse approximation matrix computed for all data Y
using dictionary D(t)

n . Note that the proposed algorithm also
utilizes sub-iterations (for the consensus step) which are not
shown here. Thus, as the other schemes do not utilize such
sub-iterations, the obtained results are better suited for steady-
state comparisons rather than convergence speed comparisons.
Also, for the centralized scheme, only the error obtained at the
steady state is shown.

Note that the proposed distributed dictionary learning
method comprises two phases, namely a phase in which all
nodes update their dictionaries using local data and a phase in
which the nodes execute a distributed algorithm to reach an
agreement about a common dictionary. These two phases are
repeated in time. Also, at the first phase, any dictionary learn-
ing algorithm can be utilized to make the local dictionaries
more suitable for local data. Since this philosophy is somewhat
different from what has been reported in literature, here we
focus on the comparison of the proposed approach against the
centralized algorithm. Due to the previous considerations, a



fair comparison to other distributed methods is not immediate
and will be the subject of future work.

Two scenarios are examined, namely, (a) the case where
each node has different data (particularly the images shown
in Fig. 1) and (b) the case where all nodes have the same
image (Lena). 200 iterations were performed in both of the
examined cases. We have used λ = 0.9, and the number
of POCS iterations I was determined using a termination
criterion that required for the maximum Frobenious norm
between the dictionaries of consecutive nodes in a POCS cycle
to be less that 0.0001.

In Fig. 2 we demonstrate the results for scenario (a), i.e.,
when the nodes have different data. It is evident that, since
the nodes have different data, the dictionaries computed using
only local data cannot describe the data of all nodes as efficient
as the dictionary computed in a centralized fashion with all
the data available. Node 2, utilizing the “crowd” image from
Fig. 1, computes a “richer” dictionary, able to represent all
data better than those computed by other nodes. In the same
figure we show the performance of the proposed distributed
dictionary learning algorithm. All nodes achieve exactly the
same performance (i.e., consensus is achieved), thus, we plot
only one curve for the proposed algorithm. We note that
this performance is significantly better than what the nodes
achieve if they work alone. However, the performance of the
distributed algorithm is not that close to that of the centralized
algorithm, in this setting. Finally, in Fig. 3 we demonstrate
the results for scenario (b), i.e., when the nodes have the same
data. It is easy to note that all schemes achieve the performance
of the centralized algorithm in this setting.

V. CONCLUSIONS

In this work, a novel distributed algorithm for dictionary
learning was presented. The problem of enforcing consensus
among the nodes was formulated as a convex feasibility
problem, and an algorithm that utilizes projections onto convex
sets was proposed to yield a solution. An efficient method to
compute the projection operations was also derived. Further-
more, a heuristic modification of the method was proposed
that significantly accelerates the reach of a steady state. In
particular, we proposed the utilization of time varying con-
vex sets that are updated iteratively. Simulation results were
conducted to demonstrate the effectiveness of the proposed
algorithm, in two scenarios where the involved nodes seek for
a common dictionary having (a) completely different data and
(b) the same data.
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