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ABSTRACT

Given two datasets that belong to different feature spaces
and both correspond to the same underlying phenomenon,
the scope of coupled dictionary learning is to compute two
dictionaries, one for each dataset, so that each dataset is
approximated using the respective dictionary but the same
sparse coding matrix. In this work, the focus is on a par-
ticular, yet widespread, form of this problem in which the
datasets correspond to slowly varying (piece-wise smooth)
signals, and the measurements contain severe noise. A novel
coupled dictionary learning technique is developed by in-
cluding a suitable total-variation-based regularization term
in the cost function. Furthermore, exploiting the smoothness
of the datasets, new fast sparse coding algorithms are de-
rived. The new techniques achieve effective modeling of the
smooth signal and significantly alleviate the effects of noise.
Finally, extensive simulation results for the problem of spec-
tral super-resolution of hyperspectral images are provided,
demonstrating the performance improvements offered by the
derived techniques.

Index Terms— Coupled dictionary learning, domain
adaptation, sparse coding, total variation, hyperspectral imag-
ing

1. INTRODUCTION

Dictionary learning and the associated sparse representation
theory have been particularly ground-breaking in the field of
signal processing, achieving remarkable results in a variety
of applications, including image denoising, image inpainting,
super-resolution and classification, among others [1], [2], [3].
So far, research efforts have mainly focused on dictionary
learning in a single sparse feature space, in centralized [4], [5]
and distributed scenarios [6]. However, in several applica-
tions and settings [3], [7–12], coupled sparse feature spaces
arise, as, for example, in low and high-resolution hyperspec-
tral images [7]. Coupled dictionary learning as a domain
adaptation procedure aims at transferring knowledge across
different but related feature spaces (domains) [13] .
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The coupled dictionary learning (CDL) model seeks to re-
veal the fundamental relationship between the two spaces, of-
ten referred to as the observation and latent, so that the sparse
representation of the signals in the observation space can be
effectively used to describe the corresponding signals in the
latent space [14]. Formally, the CDL problem can be defined
as the learning of a pair of dictionaries Dx ∈ RP×K and
Dy ∈ RM×K in such a way that the signals X ∈ RP×N

in the latent feature space and the signals Y ∈ RM×N in the
observation space can be approximated through the respective
dictionary and a common sparse coding matrix G ∈ RK×N ,
as shown by the relations X ≈DxG , Y ≈DyG.

In this study, we consider the problem of learning coupled
overcomplete dictionaries from locally homogeneous (piece-
wise smooth) signals, as for example, hyperspectral images in
which neighboring pixels exhibit strong spatial and spectral
similarities [15]. Also, we assume that the considered data
is corrupted by severe noise as, for example, is the case in re-
mote sensing applications where the hyperspectral images are
affected by various factors such as atmospheric degradations
and sensor imperfections [16]. Due to the presence of noise,
the learning of the dictionaries becomes a more challenging
task. This difficulty can be overcome by exploiting the un-
derlying homogeneity of the noisy data via incorporation of
a proper total-variation (TV) regularizer [17, 18] at the cost
functions of the proposed algorithms. Thus, the derived meth-
ods are suitable for several hyperspectral applications such as
spatial and spectral super-resolution and unmixing, without
the necessity for a costly denoising pre-processing step.

The combination of the total-variation regularizer and the
l1-norm was first introduced in [15], leading to a sparse cod-
ing algorithm named SUnSAL-TV, which was applied to the
hyperspectral unmixing problem. In this paper we investigate
the employment of a TV regularizer in the learning procedure
as well. Note that this different from [15] where the TV term
was confined to the sparse coding step. The new approach
is shown to lead to the construction of coupled dictionaries
which turn out to be more suitable for the considered smooth,
noisy signals. Coupled dictionary learning in the context of
hyperspectral images is also considered in [7], however, no
smoothness priors are considered. To sum up, the key contri-
butions of this paper are the following:



• A novel coupled dictionary learning algorithm, suitable
for piecewise smooth and noisy signals is developed, as
described in Section 3.

• Exploiting the piecewise smoothness of the considered
datasets, two variants of a fast, sparse coding algorithm
are derived, as described in Section 4.

Finally, simulation results, for the problem of spectral super-
resolution are given in Section 5.

2. PROBLEM FORMULATION

Consider the signals X and Y in the latent and observation
space respectively. Assume that X and Y are modelled as

X = Z +Wx & Y = A+Wy (1)

where Wx ∈ RP×N , Wy ∈ RM×N denote zero-mean noise
terms, whereas Z and A stand for locally homogeneous
(piecewise smooth) signals, in the sense that neighboring
vectors in Z and A , say, zi, zi+1 and ai, ai+1, are expected
to satisfy some similarity relation, as for example∥∥∥zi − zi+1

∥∥∥
1
≤ εz,

∥∥∥ai − ai+1
∥∥∥
1
≤ εa, (2)

where εz and εa denote some small, positive constants.
Given the noisy signals X and Y , our goal is to learn two

coupled dictionaries Dx and Dy , based on the signals X and
Y , in such a way that the original smooth signals Z and A
are accurately encoded by the same sparse coding matrix G.

3. COUPLED DICTIONARY LEARNING

3.1. A new cost function for CDL

Taking into consideration the underlying structure of the
noisy data X and Y , we propose a cost function that includes
the required data fidelity Frobenius norm terms, a sparsity
promoting l1-norm, and a total-variation cost that captures
the local homogeneity (smoothness) of the underlying sig-
nals. Thus, the proposed CDL problem is formulated as

argmin
Dx,Dy,G

‖X −DxG‖2F+ ‖Y −DyG‖2F + λ ‖G‖1

+µTV (G), (3)

where λ and µ are positive scalar constants controlling the
relative importance of the sparsity level and the smoothness,
respectively. Also,

TV (G) =

N−1∑
i=1

∥∥∥gi − gi+1
∥∥∥
1
, (4)

denotes a vector extension of the non-isotropic TV [15],
which promotes smooth variations between subsequent el-
ements of the sparse coding matrix columns gi and gi+1.
Problem (3) can be written in a more compact form, as

argmin
Dx,Dy,G

‖X −DxG‖2F+ ‖Y −DyG‖2F + λ ‖G‖1

+µ ‖RG‖1 , (5)

where matrix R is the horizontal finite difference operator.
It should be highlighted that relation (5) constitutes a non-

convex problem. To overcome this difficulty, we employ an
alternating optimization (AO) scheme, splitting the dictionary

learning problem into two sub-problems, namely, dictionary
update and sparse coding [19–21]. In our case, the sparse cod-
ing sub-problem, although convex, requires special treatment,
due to the non-smooth l1 and TV terms. In light of this, we
follow the ADMM strategy [7], [22–25] that is able to treat
such issues.

3.2. Optimization via ADMM

Following the ADMM optimization methodology, we con-
sider an equivalent constrained version of (5) given by

min
Dx,Dy,G

‖X −DxG‖2F + ‖Y −DyG‖2F + λ ‖V1‖1

+µ ‖V3‖1
s.t. V1 −G = 0, V2 −G = 0, V3 −RV2 = 0,

‖Dx(:, i)‖22 ≤ 1, ‖Dy(:, i)‖22 ≤ 1, (6)

where Dx(:, i) and Dy(:, i) denote the i-th atom of the re-
spective dictionary and V1, V2 and V3 are auxiliary variables.
Note that in (6) we have followed a similar procedure as in
[15] by introducing an additional dummy variable V 2, an
approach that makes the optimization procedure significantly
more tractable.

The augmented Lagrangian function of problem (6) is
L(Dx,Dy,G,V1,V2,V3,B1,B2,B3) = 1

2
‖X −DxG‖2F +

λ ‖V1‖1 + 1
2
‖Y −DyG‖2F + b1

2
‖V1 −G+B1‖2F +

µ ‖V3‖1 +
b2
2
‖V2 −G+B2‖2F + b3

2
‖V3 −RV2 +B3‖2F , (7)

where B1, B2 and B3 denote the Lagrange multiplier matri-
ces associated with the constraints, following the exact proce-
dure as in [15], [7], [24], and b1, b2, b3 stand for the penalty
parameters. Hence, the following update rules are formed:

The sub-problem for G is solved via the relation
∇GL = 0⇒ G = (DT

x Dx +DT
y Dy + b1I + b2I)

−1

(DT
x X +DT

y Y +B1 + b1V1 +B2 + b2V2) , (8)

where I stands for the identity matrix.
The solution of the sub-problem for V1 derives from

∇V1L = 0⇒ V1 = soft(G−B1/b1, λ/b1), (9)

where the soft(., τ) stands for the soft-thresholding function
x = sign(x)max(| x | −τ) .

The closed form solution for V2 is given by
∇V2L = 0⇒V2 = (b3R

TR+ b2I)
−1

(b2G−B2 + b3R
TV3 + b3R

TB3). (10)
The variable V3 can be updated as
∇V3L = 0⇒ V3 = soft(RV2 −B3/b3, µ/b3). (11)

The update rule for the coupled dictionaries derives from
solving the following equation

∇Dx(‖X −DxG‖2F ) & ∇Dy (‖Y −DyG‖2F ). (12)
In order to accelerate this step, we follow the procedure pro-
posed in [7], [24] by updating the dictionaries column by col-
umn. More analytically, the updated scheme becomes

Dj+1
x (:, i) = Dj

x(:, i) + (XG(i, :)T /(ζi + δ)),

Dj+1
y (:, i) = Dj

y(:, i) + (Y G(i, :)T /(ζi + δ)), (13)

where j stands for the number of iterations, δ is a small regu-
larization value, and ζi = G(i, :)G(i, :)T .



Algorithm 1: CDL from Noisy and Smooth data
Input: training signals X ∈ RP×N ,Y ∈ RM×N , number of iterations

J , penalty parameter b1, b2, b3
Output: Dx ∈ RP×K , Dy ∈ RM×K , G ∈ RK×N

1: Precompute Dx, Dy , B1 = B2 = B3 = 0
2: for j = 1 to J do
3: Update G via (8)
4: Update V1 via (9)
5: Update V2 via (10)
6: Update V3 via (11)
7: for i = 1 to K do
8: Update dictionaries Dx, Dy by atoms via (13)
9: end for

10: Normalize the atoms of the dictionaries
11: Update the Lagrange multipliers via (14)
12: end for

Finally, the update rules of the Lagrangian multiplier ma-
trices are given by

Bj+1
1 = Bj

1 + b1(V1 −G),

Bj+1
2 = Bj

2 + b2(V2 −G),

Bj+1
3 = Bj

3 + b1(V3 −RV2). (14)

The overall algorithm is summarized in Algorithm 1.

4. FAST TV PROMOTING SPARSE CODING

Among the most widely used algorithms for sparse coding
of hyperspectral images is the so-called SUnSAL-TV algo-
rithm [15]. However, a major drawback of this approach is
its high computational complexity, making it inappropriate
for online real-world applications. Thus, in order to deal with
such a critical issue, in this section we propose a novel proce-
dure which effectively surmounts this drawback. The novel
approach follows a block-processing methodology, where
the assumption of piecewise smooth signals is efficiently
employed to yield a remarkably reduced computational com-
plexity. The proposed sparse coding scheme can be used in
several hyperspectral imaging applications such as spatial
and/or spectral super-resolution, denoising and unmixing.

4.1. Fast OMP-based sparse approximation

The OMP [26] is considered to be one of the most prominent
algorithms for tackling the sparse coding problem. In the case
of smooth signals, however, an approximate solution based on
the OMP could be derived, assuming that a block of signals
e.g., neighboring pixels, displaying homogeneity can be rep-
resented by the same sparse representation support S, defined
by the atoms involved in the representation. Thus, instead of
building the support of each signal separately, we propose to
calculate the support of their corresponding centroid signal
using the OMP, considering that it can efficiently be used for
all signals in the block. After finding the support, a simpler
optimization problem can be employed to compute the opti-
mal weights, for each of the signals in the block. We propose
two schemes, where the first one consists in solving a linear
least squares problem, and the second one utilizes a TV regu-
larized linear least squares cost function, which is optimized
using the ADMM method.

Algorithm 2: Fast Sparse Coding Promoting Total Variation
Input: Data matrix X ∈ RP×N , dictionary D ∈ RP×K , sparsity level s,

number of iterations J ,
Output: Sparse coding matrix G ∈ RK×N

1: Precompute (RTR+ I)−1

2: for m = 1 to k do
3: Find the centroid signal of block m, xm,c = 1

n

∑n
i=1 Xm(:, i)

4: Use OMP to find the support S of the centroid xm,c

5: if µ = 0 then
6: GS = (DT

SDS)
−1DT

SXm

7: else if µ > 0 then
8: Precompute (DT

SDS + bI)−1, DT
SXm

9: for j = 1 to J do
10: Update GS via

GS = (DT
SDS + bI)−1(DT

SXm +B1 + bV1)
11: Update V1 via

V1 = (RTR+ I)−1(GS −B1/b+RTV2 +RTB2/b)
12: Update V2 via

V2 = soft(RV1 −B2/b, µ/b)
13: Update the Lagrange multipliers via

Bj+1
1 = Bj

1 + b(V1 −GS)

Bj+1
2 = Bj

2 + b(V2 −RV1)
14: end for
15: end if
16: end for

Defining the set of signals X ∈ RP×N consisting of
k blocks X = [X1, . . . ,Xk], so that each block Xm =
[xm1 , x

m
2 , . . . , x

m
n ], m = 1, . . . , k contains n homogeneous

vectors such as neighboring pixels, the cost function proposed
for the computation of the weights for block m becomes

min
GS
‖Xm −DSGS‖2F + µTV (GS) ∼

min
GS
‖Xm −DSGS‖2F + µ ‖RGS‖1 , (15)

where DS ,GS and R denote the selected atoms from the
dictionary, the corresponding representation coefficients and
the horizontal finite difference operator, respectively. Note
that the first scheme corresponds to the case where µ = 0,
which can be solved in closed form.

When µ > 0 optimization problem in (15) can be solved
via ADMM, following a similar procedure as in the previous
section. Due to space limitations, we omit the derivation steps
and give below the complete description of the algorithm. The
size n of the blocks employed can be selected through exper-
imentation to verify that the involved signals are sufficiently
homogeneous. Future work will focus on methodologies for
the dynamic selection of this parameter. Algorithm 2 summa-
rizes the proposed sparse coding algorithms.

5. NUMERICAL RESULTS

To demonstrate the efficacy and applicability of the pro-
posed schemes some appropriate experimental tests were
performed, in the context of the spectral super-resolution
problem [7]. In more detail, hyperspectral images from
the iCVL [27] dataset were used to generate the high-
dimensionality dataset X ∈ R31×N , containing data at 31
wavelengths in the 400 − 700 nm spectrum for each “hyper-
pixel”, while the low-dimensionality dataset Y ∈ R8×N was
generated by downsampling X along the spectral dimension.



Two sets of experimental results are given, where the first set
focuses on coupled dictionary learning from noisy data, while
the second set focuses on the sparse coding problem given
that the coupled dictionaries are available.

5.1. Coupled dictionary learning from noisy data

The first set of experiments quantifies the performance of
the proposed scheme, as compared to other approaches, for
the problem of coupled dictionary learning from noisy data.
We used 100 hyperspectral images to generate the training
datasets, while another 100 images were used for testing.
In particular, dataset X was generated by randomly select-
ing 1000 different 10 × 10 (hyperspectral) patches from the
training images, so that X was a 31 × 100000 matrix. Ac-
cordingly, Y was generated by downsampling X , leading
to a 8 × 100000 matrix. Additive white Gaussian noise was
added to both datasets corresponding to three different Signal
to Noise Ratios (SNRs), namely 20, 15, and 10 dB. Var-
ious algorithms for coupled dictionary learning were used
to compute the dictionaries Dx and Dy . Given these dic-
tionaries, the performance of each algorithm is measured in
terms of the quality of super-resolution as follows. For each
of the 100 testing images, Dy is used along with a sparse
coding algorithm to compute G. Then, DxG is computed
as an estimate of the high spectral resolution image, and the
Peak SNR is computed. At the testing phase, the batch-OMP
method [20] is used for sparse coding, for all the examined
schemes. Also, the dictionaries employed K = 1024 atoms,
while the sparsity level was 6.

From Fig.1, we can deduce that our proposed algorithm
namely, Algorithm 1 for µ > 0 notably outperforms the other
methods. In particular, for high levels of noise, the total vari-
ation term becomes more significant, allowing our algorithm
to maintain high PSNR values in all cases.

5.2. Fast sparse coding of locally homogeneous data

In this scenario, having a pair of dictionaries fixed, derived
via the previous procedure, we consider again the problem of
spectral super-resolution in the case where the low spectral
resolution images are corrupted by AWGN noise. In more
detail, we use the dictionaries computed by the Algorithm 1
and examine various approaches for sparse coding.

According to Fig.2, the proposed Algorithm 2, for µ > 0,
exhibits superior performance as compared to the other ap-
proaches. Although, SUnSAL-TV [15] demonstrates good
results, its high computational complexity is its basic draw-
back, rendering it slow in comparison with our fast Algorithm
2 for µ > 0. It is notable that Algorithm 2, for µ = 0, out-
performs Batch-OMP, although it was derived as an approx-
imation to the OMP. This may be explained by considering
that the centroid computed for each block is, in essence, a de-
noised, average vector that represents all noisy signals in the
block. Finally, Table 1 gives the average time, required for
constructing one hyperspectral image. The simulations were
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Fig. 1: Average PSNR over 100 images for different levels of SNRs
between the proposed Algorithm 1 (µ > 0), the Algorithm 1 with-
out the TV regularizer (µ = 0), the K-SVD based method in [3]
using the OMP at the sparse coding stage, and the method in [21]
(equations 15.42, 15.43).
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Fig. 2: Average PSNR over 10 images for different levels of SNRs
between various sparse coding algorithms.

Table 1: Average runtime for Sparse Coding Algorithms to recon-
struct a hyper-spectral image of size 1000× 1000× 31.

Method Algorithm 2 SUnSAL-TV Algorithm 2 Lasso batch-OMP
(µ > 0) [15] (µ = 0) [28, 29] [20]

time[sec] 50.62 1835.64 5.35 543.19 47.31

performed in a Matlab (2018a) implementation running on an
Intel i7-2700, CPU at 3,40GHz with 16 GB RAM. It is evi-
dent that the proposed sparse coding algorithms achieve sig-
nificantly smaller computation times, without sacrificing per-
formance. Thus, we conclude that the proposed algorithms
exploit effectively the homogeneity of the data.

6. CONCLUSIONS

In this work, the problem of coupled dictionary learning and
the problem of fast sparse coding were investigated, for the
case of locally homogeneous (smooth) data. For both prob-
lems, efficient algorithms were derived by employing proper
total-variation regularizers, and solving the resulting prob-
lems by using the ADMM optimization algorithm. Simula-
tion results for the problem of spectral super-resolution of hy-
perspectral images were conducted using real data and con-
firmed the effectiveness of the derived techniques.
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