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Abstract—The problem of computing a proper sparse rep-
resentation matrix for a signal matrix that obeys some local
smoothness property, given an over-complete dictionary, is con-
sidered. The focus is on piece-wise smooth signals, defined as
signals that comprise a number of blocks that each fulfills
the considered smoothness property. A computationally efficient
sparse coding algorithm is derived by limiting the number of
times that a new support set of dictionary atoms is computed,
exploiting the smoothness of the signal. Furthermore, a new,
total-variation regularized problem is proposed for computing
the required sparse coding coefficients, exploiting further the
smoothness priors of the signals. The considered problem is
solved using the alternating direction method of multipliers.
Finally, numerical results considering hyperspectral images are
provided, that demonstrate the applicability and complexity -
denoising performance benefits of the novel algorithms.

Index Terms—Sparse coding, piece-wise smooth signals, total
variation, hyperspectral imaging, Alternating Direction Method
of Multipliers

I. INTRODUCTION

The sparse representation theory has proven to be a remark-
ably powerful analysis and modelling tool with application to
various fields such as signal processing, image processing and
machine learning. In particular, it has offered many techniques
that achieve state-of-the-art results in a variety of problems,
ranging from image denoising, inpainting and spectral/spatial
super-resolution to image classification and segmentation [1].
Based on its theoretical foundations and ground-breaking
results [2], the sparse representation theory has evolved into
a universal mathematical model, aiming to reveal the intrinsic
sparsity that possibly exists in natural signals. More precisely,
the sparse representation model seeks to describe each signal
as a linear combination of a small number of columns, called
atoms, from a given overcomplete matrix, called dictionary,
leading to a corresponding sparse representation [2], [3].

However, the procedure of selecting the optimal set of
dictionary atoms for the representation of a signal constitutes
an NP-hard problem, and hence only sub-optimal solutions
can be derived in polynomial time [4]. In this context, exist-
ing algorithms alleviate this inherent difficulty by employing
either greedy approaches, such as orthogonal matching pur-
suit (OMP) [5], batch-OMP [6] and compressive sampling
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matching pursuit (CoSaMP) [7], or convex relaxation based
techniques which replace the l0 pseudo-norm with the l1 norm,
such as, basis pursuit [8] and least absolute shrinkage and
selection operator (Lasso) [9]. In terms of computationally
complexity, the greedy approaches outperform significantly
the convex relaxation based techniques [1]. However, when
problems with high dimensionality are to be tackled, even
greedy approaches may become a computational burden.

In this study, we consider the problem of sparse coding,
focusing on a widespread category of signals, that is, those that
can be characterized as piece-wise smooth (locally homoge-
neous). Smooth signals are often encountered in a wide range
of engineering fields, such as in image processing, control
systems and environment monitoring [10]. A typical example
of such signals is hyperspectral images, a main property of
which is that spatially neighboring pixels demonstrate strong
spectral similarity [11], [12]. In light of this, we propose a
novel approach which employs a block-processing strategy,
where the structure of piece-wise smooth signals is effectively
exploited to offer a notably reduced computational complexity,
hence resulting in an efficient sparse coding scheme.

Apart from the block-processing strategy employed by the
previous scheme, the smoothness of the signals considered
is further taken into account by introducing a proper total-
variation (TV) regularizer [13] at the cost function used
for computing the representation weights, thus leading to a
modified technique that promotes small variations in these
coefficients. The use of the TV regularizer, which is well
known for its denoising properties [14], renders this second
scheme resilient to noisy input signals. It should be stated
that a TV regularizer has also been proposed in the so-
called SUnSAL-TV sparse coding algorithm [11], combined
with an l1 norm term, achieving state-of-the-art results in
the hyperspectral unmixing problem. However, this algorithm
is excessively expensive in computational terms [11], [15],
inducing its limited applicability in real-time and/or high-
dimensional applications with large data-sets. By contrast, the
proposed schemes enjoy a remarkably lower computational
complexity, without sacrificing accuracy, and turns out to be
ideal for several applications in which the involved signals are
piece-wise smooth, such as in hyperspectral imaging, espe-
cially real-time, e.g., spatial/spectral super resolution, unmix-
ing, denoising and classification [16], [11], [15], [17]. In our
previous work [18] we have incorporated the above-mentioned



idea during a coupled dictionary learning procedure.
The remainder of the paper is organized as follow. Section

II formulates the problem under study. Section III describes
the proposed algorithms. Section IV presents some proper
experiments on hyperspectral images, that demonstrate the
efficacy of the new algorithms. Section V concludes the paper.

II. PROBLEM FORMULATION

Consider an over-complete dictionary D ∈ RM×K and a
data matrix Xm ∈ RM×N , which consists of vectors x

(i)
m

(i = 1, . . . , N ) that are expected to obey some smoothness
property. The smoothness property of interest in this work is
a relation of the form∥∥∥x(i)

m − x(i+1)
m

∥∥∥
1
≤ ε, i = 1, 2 . . . , N − 1 , (1)

for some suitable small positive constant ε, that informs us
that adjacent vectors in Xm are expected to have similar
values. As an example, consider that Xm may be a sufficiently
small block of neighboring hyper-pixels of some hyperspectral
image. In the following, we use the term piece-wise smooth
signal to refer to signals that can be decomposed into a number
of such smooth blocks Xm, m = 1, . . . , P . Note that since, in
general, a given dataset may contain blocks that violate (1), a
mechanism to detect and handle such non-smooth blocks must
also be considered, as explained further in Section III-C.

The scope of this work is to compute a so-called sparse
approximation matrix Gm ∈ RK×N , so that

Xm ≈DGm . (2)

Different from general sparse coding algorithms that exist in
literature, the focus of this work is on exploiting the smooth-
ness relation (1) in order to derive low complexity solutions,
without sacrificing performance. As it will be demonstrated in
the sequel, the inherent structure of the data can be effectively
used as a-priori information so as to design sparse coding
algorithms with remarkably reduced computational cost as
compared to standard sparse coding algorithms that ignore the
existing relations among homogeneous signals.

III. EFFICIENT SPARSE CODING

In this section, we derive two novel schemes that can be
used for the efficient sparse coding of piece-wise smooth
signals.

A. The proposed schemes

In general, the computational complexity of sparse coding
algorithms is mainly due to the problem of determining a
proper support set, defined as the set of dictionary atoms
employed in the representation, for the signal of interest. In
particular, an optimal solution would require a combinatorial
optimization algorithm that examines all possible support
sets, an approach which is of-course not feasible in practise.
Furthermore, the determination of the support set has dominant
complexity also in various practical algorithms, such as the
OMP, which constitutes a greedy approach to approximate the
solution of exhaustive search.

In the case of interest in this work, where a matrix Xm

that contains “similar” signals as described by (1) is to
be sparsely coded, significant computational gains would be
offered by the assumption that the same support set can be
effectively used for all vectors x

(i)
m . In particular, a proper

support set, denoted as Sm, could be computed by executing
some suitable algorithm only once for the whole block of
signals, considering some suitable “representative” signal for
the block.

Thus, instead of building the support for each data-vector
independently, it is proposed here to calculate the support of
their centroid signal, using some suitable sparse coding algo-
rithm (e.g. OMP), considering that it can accurately represent
all signals in the block. Consequently, considering the part of
the dictionary that comprises of the respective atoms identified
by the support Sm as DSm , a new regularized optimization
problem emerges to compute efficiently the optimal weights
for each data-vector in Xm, exploiting further the smoothness
priors. More analytically, by incorporating a suitable total-
variation (TV) regularizer, the following optimization problem
is proposed for the identification of the optimal weights G(o)

Sm
for the block of signals Xm,

G
(o)
Sm = arg min

GSm

‖Xm −DSmGSm‖
2
F + λTV (GSm) , (3)

where GSm and λ denote the corresponding representation
coefficients matrix and a positive constant that controls the
relative importance of the smoothness, respectively. Note that
since the support set has been identified, GSm is not a sparse
matrix, as it contains only the non-zero elements of the
respective sparse matrix Gm. Moreover,

TV (GSm) =

N−1∑
i=1

∥∥∥g(i)
Sm − g

(i+1)
Sm

∥∥∥
1

(4)

which denotes a vector extension of the non-isotropic TV [11],
indicating that the sparse coding coefficients of signals that
satisfy relation (1) should not alter significantly.

Furthermore, the optimization problem in (3) can be given
in a more compact form, as

G
(o)
Sm = arg min

GSm

‖Xm −DSmGSm‖
2
F + λ ‖RGSm‖1 (5)

where matrix R is a linear operator calculating the horizontal
finite differences of the coding matrix GSm .

When λ = 0, the optimization problem in (5) reduces
to a simple linear least-squares problem that has a closed-
form solution. In the following, we denote as Scheme 1 this
particular case.

Accordingly, when λ > 0, the second proposed scheme
arises, denoted as Scheme 2. By incorporating the above
mentioned TV regularizer, Scheme 2 takes into account the
smoothness attribute of the signals. As expected, this scheme
enjoys significant noise removal properties. It should be men-
tioned that when λ > 0, relation (5) constitutes a challenging
problem to be solved due to the non-smooth TV term. In view
of this, the extended alternating direction method of multipliers



(ADMM) strategy [19]–[22] is proposed to surmount this dif-
ficulty. The details of this approach are given in the following
sub-section.

B. Optimization via ADMM

Employing the ADMM methodology to (5), we arrive at the
following constrained optimization problem,

min
GSm

‖Xm −DSmGSm‖
2
F + λ ‖V2‖1

s.t.V1 −GSm = 0,V2 −RV1 = 0 , (6)

where V1 and V2 denote auxiliary variables. It is noteworthy
that in (6) we introduced two auxiliary variables, namely V1,
and V2.

The corresponding augmented Lagrangian function is given
by

L(GSm ,V1,V2,B1,B2) =
1

2
‖Xm −DSmGSm‖

2
F

+λ ‖V2‖1 +
b

2
‖V1 −GSm +B1/b‖2F

+
b

2
‖V2 −RV1 +B2/b‖2F , (7)

where B1 and B2 denote the Lagrange multiplier matrices
associated with the constraints, [11], [21], and b > 0 stands
for the penalty parameter. Thus, a sequence of individual sub-
problems emerges.

The closed form solution of the sub-problem for GSm is

∇GSm
L = 0⇒ GSm =(DT

SmDSm + bI)−1

+(DT
SmXm +B1 + bV1) , (8)

where I denotes the identity matrix. Note that the inverse
matrix (DT

SmDSm + bI)−1 and the product DT
SmXm can be

calculated only once, as they remain fixed at each iteration.
The closed form solution of sub-problem V1 is

∇V1L = 0⇒V1 = (RTR+ bI)−1

+(GSm −B1/b+R
TV2 +R

TB2/b) . (9)

Again, the inverse matrix (RTR + bI)−1 can be calculated
only once at the beginning of the proposed algorithm.

Additionally, the solution of sub-problem V2 is given by

∇V2
L = 0⇒ V2 = soft(RV1 −B2/b, λ/b) , (10)

where the soft(., τ) stands for the soft-thresholding function
x = sign(x)max(| x | −τ).

Finally, the update rules for the Lagrangian multiplier
matrices are

Bk+1
1 = Bk

1 + b(V1 −GS)
Bk+1

2 = Bk
2 + b(V2 −RV1) . (11)

C. Detection and handling of non-smooth blocks

In this sub-section, we summarise the proposed sparse
coding techniques. To complete the derivation of an effective
block-based sparse coding algorithm, as developed in the
previous paragraphs, it is very important to furnish it with
a mechanism, which will detect and handle the case where

Xm contains vectors that cannot be accurately encoded by
the same support set. In our approach, we employ a simple
condition that examines if the representation error for each
vector x(i)

m is sufficiently small. In more detail, we examine if∥∥∥x(i)
m −DSm

g
(i)
Sm

∥∥∥
2
< T , (12)

where T is some properly defined threshold and g
(i)
Sm

denotes
the i-th column of matrix G(o)

Sm
. All vectors x

(i)
m for which

relation (12) is violated, participate in a new step of the
algorithm where their centroid is computed, the corresponding
support is identified and the respective encoding coefficients
are computed, as detailed in the previous paragraph. This
procedure could be employed recursively, until the number
of signals that violate the condition becomes very small, in
which case the OMP algorithm could be employed for each
one. In the numerical experiments conducted, however, it was
found out that such a recursive procedure is rarely required
for more than a few recursions.

Given a piece-wise smooth input signal X =
[X1, . . . ,XP ], where Xm may be non-overlapping patches
derived from a hyperspectral image, a proper value for the
threshold T , required in relation (12), can be estimated in a
more insightful way by the following procedure,

1) Compute the centroids xm,c, for each block Xm, m =
1, 2, . . . , P .

2) Compute the support sets Sm, m = 1, 2, . . . , P , using a
sparse coding algorithm such as OMP.

3) Compute the sparse approximation coefficients for each
of the centroids, and the respective representation errors,
say em, m = 1, 2, . . . , P .

4) Compute the mean µ and variance σ2 of em.
5) Set T = µ+ c · σ, where the positive constant c controls

the approximation error that is acceptable, offering a
balance between the complexity and accuracy of the
algorithm.

Thus, the overall algorithm consists of two main steps,
where the first step employs the above mentioned procedure
for the estimation of the threshold T , while the second step
implements the sparse coding method analyzed in Section
III-A. It should be stated that the proposed algorithm is not
limited to use the OMP algorithm for determining the support
of the centroid. Rather, any sparse coding algorithm could be
also employed. Table I summarizes the proposed scheme.

IV. NUMERICAL RESULTS

To demonstrate the effectiveness of the proposed algorithm,
some proper numerical experiments were conducted, in the
context of computing sparse representations of hyperspectral
images. To validate the accuracy of the sparse coding al-
gorithms we compared the reconstructed hyperspectral im-
ages with the corresponding original images. In particular,
hyperspectral images from the iCVL dataset [23] were used
to evaluate the proposed schemes. The provided images are
1300 × 1300 × 31 dimensional cubes, with d = 31 spec-
tral wavelengths, pertaining to a variety of natural scenes.



TABLE I
THE PROPOSED SPARSE CODING ALGORITHM

Input: Data matrix X = [X1, . . . ,XP ], dictionary D ∈ RM×K , sparsity
level, number of iterations J , penalty parameter λ

Output: Sparse coding matrix G ∈ RK×P

1: Precompute (RTR+ I)−1

// Stage A: Threshold estimation procedure
2: Find the support Sm for each block (m = 1, 2, . . . , P ) and the threshold

error T , following the procedure in Section III-C
// Stage B: Sparse coding procedure

3: for m = 1 to P do
4: if λ = 0 then
5: GS = (DT

SmDSm )−1DT
SmXm

6: Identify the signals x
(i)
m which violate condition (12) and repeat

the process until the condition is met for all signals in the block
Xm.

7: else if λ > 0 then
8: Precompute (DT

SmDSm + bI)−1, DT
SmXm

9: for j = 1 to J do
10: Update GSm via (8)
11: Update V1 via (9)
12: Update V1 via (10)
13: Update the Lagrange multipliers via (11)
14: end for
15: Identify the signals x

(i)
m which violate condition (12) and repeat

the process until the condition is met for all signals in the block
Xm.

16: end if
17: end for

Furthermore, a second dataset which we used was the well-
known AVIRIS Cuprite hyperspectral image [24], which is a
2776 × 754 × 224 dimensional cube with d = 224 spectral
bands. The images were processed into small non-overlapping
patches with size (n×n×d). Thus, each patch forms a block
Xm ∈ Rd×N , where N = n2. Note that, such blocks were
described in Section II. After some experimentation, n = 10
was found to be a proper choice for the cases considered. Also,
in all experiments, a fixed dictionary was used which was
learned by employing the K-SVD [25] and OMP algorithms,
on a suitable image dataset that did not include the images
considered for sparse encoding. For all cases, the dictionaries
employed K = 1.024 atoms. For the proposed schemes the
OMP was used for determining the support for each block.

To this end, two sets of experimental results are given, the
first of which focuses on sparse coding using the original
images of the datasets used, while the second one focuses on
the problem of sparse coding of images corrupted by severe
noise. The simulations were performed using Matlab (2019a),
running on a personal computer with an Intel i7-8700 CPU at
3.40 GHz with 16 GB of RAM.

A. Sparse coding of locally homogeneous data

In our first experiment, hyperspectral images from the iCVL
and the AVIRIS datasets were employed, while measurements
of the execution time as well as the peak-to-noise ratio (PSNR)
between the original and the reconstructed images were col-
lected. We examine the first scheme of the proposed algorithm,
corresponding to the case where λ = 0, and compare its
performance to the batch-OMP algorithm [6].

TABLE II
AVERAGE PSNR AND EXECUTION TIME OVER 40 HYPERSPECTRAL OF

SIZE 1300× 1300× 31 FROM ICVL [23], BETWEEN THE PROPOSED
SCHEME 1 FOR λ = 0 AND THE BATCH-OMP [6].

Sparsity level = 9 Sparsity level = 12
Method Time [sec] PSNR [dB] Time [sec] PSNR [dB]

batch-OMP 57.90 51.78 76.70 54.39
Scheme 1 (λ = 0) 4.20 51.30 4.84 53.90

TABLE III
PSNR AND EXECUTION TIME OVER THE AVIRIS CUPRITE

HYPERSPECTRAL IMAGE [24] OF SIZE 2776× 754× 224, BETWEEN THE
PROPOSED SCHEME 1 FOR λ = 0 AND THE BATCH-OMP [6].

Sparsity level = 20 Sparsity level = 23
Method Time [sec] PSNR [dB] Time [sec] PSNR [dB]

batch-OMP 246.80 50.1623 314.66 53.13
Scheme 1 (λ = 0) 16.67 49.6970 17.39 52.75

Table II summarizes the results for the iCVL dataset while
Table III summarizes the results for the AVIRIS Cuprite image
[24]. It is evident that Scheme 1 (λ = 0) significantly outper-
forms the batch-OMP algorithm in terms of execution time.
Furthermore, the proposed scheme has a very small perfor-
mance degradation as compared to the more computationally
demanding batch-OMP algorithm. Also, it is worth noting
that this degradation can be alleviated by a small increase
of the sparsity level, while the execution time still remains
significantly lower than that of the batch-OMP algorithm.

B. Sparse coding of noisy locally homogeneous data

In this scenario, we consider the problem of computing
the sparse representations of 20 hyperspectral images from
the iCVL dataset, after they have been corrupted by severe
noise. In greater detail, the images were degraded by additive
white Gaussian noise, corresponding to three different levels
of Signal to Noise Ratios (SNRs), namely 20, 15, 10 dB.
Various algorithms for sparse coding were examined in order
to quantify the merits of the proposed schemes.

Figure 1 demonstrates the average PSNRs achieved by var-
ious algorithms for the SNR values considered. It is clear, that
the proposed Scheme 2 (λ > 0), notably outperforms the other
methods. Although, SUnSAL-TV [11] exhibits similarly good
performance, its high execution time is its major bottleneck,
rendering it significantly slow in comparison with our fast
Scheme 2 (λ > 0). Furthermore, it is noteworthy that even
Scheme 1 (λ = 0), outperforms the batch-OMP algorithm.
Although the proposed Scheme 1 does not employ the noise-
resilient TV regularizer, it still enjoys some denoising prop-
erties. This can be explained by considering that the centroid
computed for each block is, in essence, a denoised, average
vector that represents all noisy signals in this block.

Overall, it is evident that the proposed sparse coding
schemes not only accomplish remarkably lower computation
times than the other considered sparse coding techniques, but
also exhibit superior performance in terms of accuracy.
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Fig. 1. Average PSNR over 20 images for different levels of SNRs between
the proposed Scheme 2 (λ > 0),the Scheme 1 (λ = 0), the SUnSAL-TV
[11], the Lasso [9] and the batch-OMP [6].

TABLE IV
AVERAGE RUNTIME FOR SPARSE CODING ALGORITHMS TO

RECONSTRUCT A HYPERSPECTRAL IMAGE OF SIZE 1300× 1300× 31.

Method Scheme 2 SUnSAL-TV Scheme 1 Lasso batch-OMP
(λ > 0) [11] (λ = 0) [9] [6]

time[sec] 54.61 2617 4.20 720.81 57.90

V. CONCLUSIONS

In this work, the problem of sparse coding of piece-wise
smooth (locally homogeneous) signals was considered. The
smoothness property of the input signals was exploited so as
to derive fast schemes that alleviate the need for computing the
support of dictionary atoms for each input signal separately.
Furthermore, a total-variation regularized cost function was
proposed for the problem of computing the required sparse
representation coefficients. An alternating direction method of
multipliers based method was employed for optimizing the
proposed cost function. The novel schemes were shown to of-
fer significantly lower computational complexity as compared
to other, state-of-the-art algorithms, without lacking in terms of
accuracy. Moreover, the proposed schemes offer state-of-the-
art denoising performance, at a fraction of the computational
cost.
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