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Abstract—In this work we develop a cost-efficient coupled dic-
tionary learning based method for reconstructing multispectral
images using only a single RGB commercial camera, without re-
quiring the sensitivity function of the camera sensor. Considering
the very high cost, the acquisition time and reduced mobility of
multispectral cameras we claim that this is a very attractive
option. In contrast to other approaches, the proposed method is
not limited only to spectral bands inside the visible spectrum,
but it also considers an even more challenging task, that is
the reconstruction of spectral bands outside the visible range
closer to the near-infrared wavelengths of the spectrum. Extensive
experiments with real data demonstrate the effectiveness and
applicability of the proposed method in the precision agriculture
domain. To this end, we calculate one of the most widely used
vegetation indices, the normalized difference vegetation index
(NVDI), which may be used for plant health monitoring.

Index Terms—Multispectral Imaging, Near infrared bands,
Coupled dictionary learning, NDVI, RGB images

I. INTRODUCTION

Over the last years, multispectral imaging has proven to
be remarkably beneficial to various computer vision applica-
tions, ranging from remote sensing [1], medical imaging and
autonomous driving to precision agriculture and land health
surveillance [2]. Contrary to mainstream RGB cameras, which
can capture only three spectral bands, the aim of multispectral
imaging is to exploit the abundant spectral information which
underlies the electromagnetic spectrum, providing much more
detailed spectral resolution. Typically, a multispectral camera
can offer 5 to 15 spectral bands in the visible and near-infrared
electromagnetic spectrum. However, this high spectral resolu-
tion is accompanied with several limitations. In particular, the
cost of the multispectral cameras is very high and they exhibit
various mobility limitations due to their weight and the need
for special hardware equipment. This may be an obstacle for
real applications.

Considering the aforementioned limitations, in this paper,
we propose a low-cost and efficient method to infer detailed
spectral information outside the visible spectrum range by
employing only an RGB camera. Our ultimate goal is to
develop a novel coupled dictionary learning method which
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exploits the spectral information without the need for a mul-
tispectral camera during the system’s operation. Using only
an RGB camera, the proposed system is able to reconstruct
accurately the most informative spectral bands for various
applications such as monitoring the health of the crop. To this
end, we examine the validity of our method in a real-world
application for detecting plant diseases. In more details, having
reconstructed spectral bands in the near infrared spectrum,
we calculate one of the most widely used vegetation indices,
namely the normalized difference vegetation index (NDVI) [3],
which can reveal valuable information concerning the health
of the under examined plants [4].

Plant diseases have been a thorny and perplexing problem
in the agricultural domain with tremendous economic and
environmental impacts worldwide [5]. Advances in signal pro-
cessing have provided an opportunity to extend and ameliorate
automatic systems so as to monitor plant health and identify
pathogens [6], [7]. In recent years, in precision agriculture
[7], multispectral and hyperspectral imaging provide new
insights into the complicated pathogen-host system, enabling
researchers to investigate the reflectance properties of the
plants in various wavelengths of the electromagnetic spectrum
(visible, near infrared), thereby leading to more efficient
methods for plant disease detection [7], [8].

To sum up, the key contribution of the proposed work is
two-fold:

• A novel method is proposed which based on visible
(RGB) data provides effective spectral reconstruction for
spectral bands beyond the visible spectrum. Particularly,
unlike previously presented that focus on reconstructing
spectral bands inside the visible range, our method en-
ables the recovery of near infrared spectral bands, i.e.,
bands beyond the spectral reach of the RGB camera.

• Application of the proposed method to obtain spectral
data for a plant disease detection task in a real greenhouse
setting by calculating the NDVI index, which is very
useful for monitoring plant health.

The remainder of the paper is organized as follows. Section
2 presents an overview of the related literature. Section 3 de-
scribes the proposed technique for reconstructing multispectral
bands via RGB data. Section 4 presents some experimental re-
sults that demonstrate the efficacy of the proposed framework.



Finally, section 5 concludes the paper.

II. RELATED WORK

In literature, there are a plethora of studies tackling the
problem of recovering spectral information inside the visible
spectrum, by exploiting only RGB measurements. Nguyen et
al. [9], employed a radial basis network to learn a non-linear
mapping from RGB to multispectral measurements. Arad et al.
[10] proposed a dictionary learning based method, utilizing the
sparsity of the multispectral images. In particular, they used
a dictionary from hyperspectral priors and the corresponding
RGB projections via the known sensitivity function of the
RGB camera to recover hyperspectral signals through RGB
intensities. Furthermore, Oh et al. [11] utilized the different
sensitivity functions of multiple RGB cameras to reconstruct
hyperspectral images. Later, Wu et al. [12] employed adjusted
anchored neighborhood regression for extracting hyperspectral
information. Akhtar et al. [13] used Gaussian processes for
recovering spectral details. In recent years, as increasing
amounts of spectral-data have become available, deep learning
based approaches have emerged. Alvarez-Gila et al. [14]
employed Generative Adversarial Networks to reconstruct the
spectral information through RGB images. Kaya et al. [15]
proposed a CNN-based model to recover spectral signals
without any priors about the scene conditions. Peng et al. [16]
employed a residual pixel attention network for recovering
spectral information. Shi et al. [17] proposed a residual
advanced CNN to reconstruct the spectral information through
RGB images. Yan et al. [18] introduced a methodology based
on the U-net-based architecture, namely C2H-Net, to recover
hyperspectral images from their RGB measurements. Zhao
et al. [19] used a hierarchical regression network (HRNet)
to reconstruct spectral details. Li et al. [20] employed an
adaptive weighted attention network (AWAN) for spectral
reconstruction, exploiting the knowledge of the RGB camera
sensitivity function.

It should be highlighted that the above mentioned ap-
proaches focus only on recovering spectral bands inside the
visible spectral range. However, in numerous scenarios and
settings, such as plant health monitoring [3], [8] and medical
applications [21], the most informative spectral bands belong
outside the visible spectrum. Hence, in this study, unlike the
other studies in literature, we focus on developing an efficient
coupled dictionary learning method, tackling an even more
difficult problem, which is the recovery of spectral information
outside the visible range. In particular, the proposed method
is able not only to reconstruct spectral bands inside the visible
spectrum, but more importantly, to recover bands in the near
infrared range.

Overall, this paper provides valuable evidence that such
a challenging problem, that is the reconstruction of spectral
bands beyond the visible spectrum, is feasible with significant
practical value as it can be implemented in some real-world
applications.

III. MULTISPECTRAL RECONSTRUCTION FROM
RGB DATA

We propose a cost-efficient and accurate technique for
reconstructing spectral information in the near-infrared spec-
trum, via an RGB camera, thus reducing the dependency on
multispectral cameras in real-world applications.

A. Problem formulation

Consider an RGB image, denoted by Irgb ∈ Rn1×n2×3.
Our principal goal is to recover a multispectral image Ims ∈
Rn1×n2×B which corresponds to the same natural scene,
where where B corresponds to the spectral channels. Hence,
our focus is to ameliorate the spectral resolution (dimension)
of the RGB image by reconstructing spectral bands in the
near infrared spectrum, which are the most informative for
the application at hand. The formulation of the considered
problem can be expressed as follows:

Ims = F(Irgb), (1)

where F denotes the the mapping function between the RGB
space and the multispectral space. Based on training data, our
aim is to accurately model this unknown transformation func-
tion by employing a coupled dictionary learning methodology.

B. Coupled Dictionary learning based method

Building upon the inherent sparsity of the natural images
[22], [10], we propose a sparse coupled dictionary learning
method to model the unknown relationship between the RGB
and the multispectral measurements. Concretely, given an
RGB training set X : {xi}Ni=1, where xi ∈ Rd is an RGB
patch (size

√
p × √p × 3 and held as a column vector of

length d), and the corresponding multispectral training set
Y : {yi}Ni=1, where yi ∈ Rl is a spectral patch (size√
p × √p × B and held as a column vector of length l),

the optimum pair of coupled dictionaries Dx ∈ Rd×K and
Dy ∈ Rl×K can be estimated for any coupled signal pair
{xi, yi} by solving the following objective function:

min
Dx,Dy,G

‖X −DxG‖2F + ‖Y −DyG‖2F
s.t. ‖G(:, i)‖0 ≤ To ∀ i = 1, ..., N, (2)

‖Dx(:, j)‖22 ≤ 1, ‖Dy(:, j)‖22 ≤ 1 ∀ j = 1, ...,K ,

where G(:, i) is the ith sparse coding column vector corre-
sponding to the ith coupled pair signals {xi, yi}, Dx(:, j) and
Dy(:, j) stand for the jth atom of the respective dictionary.

However, the reconstruction of spectral bands outside the
visible spectrum using only RGB measurements constitutes
a really challenging ill-posed problem, since the information
captured by RGB cameras does not practically extend to the
IR range. Thus, instead of learning a large pair of of large
dictionaries, say, Dx and Dy to represent the RGB data X and
the multispectral data Y respectively, our proposed method
aims to reduce the size of the coupled dictionaries and make
the atoms of the dictionaries more effective in representing the
multispectral and the RGB data. In light of this, we cluster
the training dataset into M clusters using the Kmeans++



algorithm, where each cluster contains similar multispectral
data and the corresponding RGB measurements. Thus, having
grouped the data into clusters in this method we learn smaller
coupled dictionaries for each cluster independently.

Let Xm and Y m denote the RGB and the multispectral
training data in the m-th cluster. The coupled dictionaries
are expressed as Dm

x , Dm
y and they can be obtained by

solving the optimization problem in (3). Nevertheless, instead
of learning the dictionaries jointly, we start with the RGB data
Xm constructing the RGB dictionary Dm

x based on the classic
single feature space dictionary learning problem:

min
Dm

x ,Gm

‖Xm −Dm
x Gm‖2F

s.t. ‖Gm(:, i)‖0 ≤ To, ‖Dm
x (:, j)‖22 ≤ 1. (3)

The problem in relation (3) can be effectively tackled via
the K-SVD dictionary learning algorithm [23], whereas the
sparse coding stage can be performed using the Batch-OMP
algorithm [24]. After learning the dictionary Dm

x and sparse
coding matrix Gm, the corresponding spectral dictionary Dm

y

is estimated as follows:

min
Dm

y

∥∥Y m −Dm
y Gm

∥∥2
F

(4)

The closed form solution of problem (4) is given by

Dm
y = Y mG+

m = Y mGT
m(GmGT

m)−1. (5)

C. Efficient Multispectral Recovery

Given a new testing RGB image, say Xnew, the following
methodology is used to recover the corresponding multispec-
tral image of the scene. The RGB image is divided into non-
overlapping patches size

√
p × √p × 3 (held as a column

vectors of length d). For each patch xi encountered in the
RGB image, its nearest cluster in the training set is found and
the corresponding RGB dictionary is employed to represent
it. Then, all patches in the examined image that belong to the
m-th cluster can be expressed as

Xm
new = Dm

x Gm, (6)

where Gm denote the sparse representation matrix for the
testing RGB data in the m-th cluster. Note that the sparse
representation matrix can be calculated by using some sparse
coding algorithm such as batch-OMP [24].

Considering that the proposed method can be used for pro-
cessing large volumes of data, such as health-plant monitoring,
the computational complexity of the existing sparse coding
algorithms may become a critical issue, thus rendering the
reconstruction of the multispectral image an extremely slow
procedure. In particular the sparse coding algorithms treat the
patches that belong to the m-th cluster independently ignoring
that they demonstrate strong similarity properties. In light of
this, and only for the sparse coding procedure during the
testing stage we use the algorithm presented in [25], which
employs a block-processing strategy and reduces notably the
required computational complexity, thus making our method

ideal for online applications.
Having effectively estimated the sparse matrix Gm, the

corresponding multispectral data of the m-th cluster can be
reconstructed by

Y m
new = Dm

y Gm. (7)

Thus, the overall multispectral image can be recovered by
gathering the reconstructed data from all the M clusters.

IV. EXPERIMENTAL PART

As it has already been mentioned, unlike the other studies
in literature that reconstruct spectral data only in the visible
spectrum range, our proposed method tackles an even more
difficult and practical problem, which is the recovery of
spectral information outside the visible range (based on data in
the visible). For this reason, the proposed method could not be
compared with the recent studies discussed in the introduction,
as these tackle in fact different problems. To validate our
method, we conducted experiments in the precision agriculture
domain, by estimating near infrared bands and by calculating
the NDVI index.

A. Dataset and Parameter Setting

Our dataset includes 100 8-bit multispectral images from
different tomato plants. Specifically, the multispectral camera
provided three spectral bands in the visible spectrum, namely
the 460 nm, 540 nm and 630 nm and one in the near infrared
spectrum, namely the 850 nm. The spatial resolution of each
image is 1770x2368 pixels. In addition, each multispectral
image has a corresponding RGB image.

Concerning the implementation, the number of the clusters
was set to M = 35. The dictionaries employed K = 64
atoms, while the sparsity level was 12. A patch size of 3×3×3
(or length 27 in vector form) and 3×3×4 (or length 36 in
vector form) was employed to divide the RGB and multispec-
tral images into non overlapping patches respectively. These
parameters were determined to be ideal via exploration of the
parameter space. A 5-fold cross-validation was employed to
determine the parameters and the performance of our method,
splitting the dataset into training, validation and test set.
Finally, the reconstruction performance between the ground
truth and the estimated images, is quantified by the Relative
Root Mean Square Error (RMSE), normalized by the ground
truth luminance, Peak Signal to Noise Ratio (PSNR) and
Structural Similarity Index (SSIM) metrics. The simulations
were performed using Matlab (2019a), running on a PC with
an Intel i7-8700 CPU at 3.40 GHz with 16 GB of RAM.

B. Numerical Results

Figure 1 demonstrates the high quality of the reconstructed
near infrared spectral band at 850nm by illustrating a com-
parison with ground truth images. It is worth noting that the
errors maps are depicted on a scale of [0 − 0.2] instead of
the standard scale [0 − 1], as the error is very small, which
indicates the effectiveness of the proposed method. The above
mentioned results are consistent with the quantitative analysis
summarized in Table I, since our method achieves high PSNR



TABLE I: Average reconstruction results for the 850 nm near
infrared spectral band.

Metrics PSNR SSIM [0-1] RMSE [0-1]
Proposed method 32.17 0.9663 0.0251

Fig. 1: The ground truth and reconstructed images in 850 nm
near infrared spectral band. In row one we present the 850nm
ground truth, in row 2 the reconstructed in 850 nm and in
row 3 the error. Error maps are depicted on a scale of [0-0.2]
instead of the standard scale [0-1], as the error is very small.

and SSIM (more than 0.95 and closer to 1) values and low
error rate in terms of RMSE metric. Figure 2 illustrates the
sensitivity of the proposed method to the selection of the
parameters, namely the number of clusters (M), the number of
the dictionary atoms (K) and the sparsity level. To examine the
parameters, the dataset was divided into two parts: 50% for the
training and 50% for testing and vise versa. The number of the
clusters appears to have a significant impact on the accuracy
of our method, as it offers a huge dimensionality reduction on
size of the dictionaries, making the atoms of the dictionaries
more compact and efficient to represent the RGB and near
infrared data. It is evident that the best results occur when
large cluster size and smaller dictionaries are employed. Thus,
the cluster size was set to 35 and the number of atoms was
set to 64 for later tests. On the other hand, the sparsity level
has a low influence on the PSNR of the proposed method.
For that reason, we didn’t consider values greater than 12,
as they would impact only the computational complexity of
the method. Hence, the sparsity level was set to 12 balancing
between the accuracy and the computational complexity.

To further demonstrate the efficacy and applicability of the
proposed method, we conducted experiments in the precision
agriculture domain, by calculating the normalized difference
vegetation index (NDVI) [3]. To estimate the vegetation index,
we calculate also the three spectral bands inside the visible
range (460, 540 and 630 nm) . In particular, Figure 3 depicts
the ground truth NDVI index using the spectral bands in the
650 nm and 850 nm captured via the multispectral camera and
the estimated NDVI index calculated via the corresponding
reconstructed spectral bands. The histograms of the ground
truth and reconstructed NDVI indices are also presented. It
is evident that the proposed method is able to accurately
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Fig. 2: Influence of the clusters number and the dictionary
size on the performance of the proposed method, employing
(a) sparsity level = 12, (b) sparsity level =9 and (c) sparsity
level = 6.

estimate the NDVI index, providing comparable results with
the multispectral camera. Finally, regarding the computational
complexity of our method, the reconstruction of a multispectral
image of size 1770x2368x4 requires only 7 seconds, thus
rendering the method ideal for online applications.

V. CONCLUSIONS

We developed an efficient coupled dictionary learning based
method for precisely reconstructing multispectral images using
a single RGB commercial camera. On the contrary to other
methods, our methodology focuses on reconstructing spectral
bands outside the visible spectrum, namely bands closer to
the near-infrared wavelengths of the spectrum. Considering
the very high cost, the acquisition time and reduced mobility
of multispectral cameras we claim that this is a very attractive
option. Furthermore, we demonstrated its application in a real
setting for estimating one of the most widely used vegetation
indices, the normalized difference vegetation index (NVDI)
and showed that it can be used as a significantly cheaper
and far more usable alternative to installing a spectral cam-
era, which gives comparable results.The datasets used in the
experimental part will soon become publicly available.
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