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ABSTRACT
In this paper, a novel technique for the hyperspectral image
deconvolution problem is developed. First, considering the
highly ill-posed nature of the examined problem, it is imper-
ative to incorporate proper priors (regularizers) to capture the
strong spectral and spatial dependencies of the hyperspectral
images. Then, in light of this, a novel optimization problem
is proposed by employing a convolutional neural network to
act as a regularizer, which is learnt to reflect the properties
of the signals of interest. To solve the proposed optimization
problem, we use the half quadratic splitting methodology,
thus designing an efficient iterative solver (iteration map).
Based on the Deep Equilibrium (DEQ) modeling, which
aims to express the proposed iterative solver as an equilib-
rium (fixed-point) computation, a highly interpretable deep
learning-based network is derived, which can be trained end-
to-end. Extensive numerical results using two publicly avail-
able datasets illustrate that the proposed method markedly
outperforms other state-of-the-art approaches.

Index Terms— Hyperspectral images, deep equilibrium
models, deconvolution, learnable regularizers, deep unrolling

1. INTRODUCTION

Over the years, many scientific and technological advance-
ments have greatly improved hyperspectral imaging (HSI),
which now constitutes a helpful tool in numerous domains
and applications, such as remote sensing, medical science
and autonomous driving [1, 2]. However, during the acqui-
sition stage, hyperspectral images are often degraded in many
ways, such as the addition of noise and various blurring ef-
fects, which heavily deteriorate the performance in HSI ap-
plications [3, 4]. Thus, the restoration of hyperspectral im-
ages constitutes a critical pre-processing stage and stresses
the need for efficient denoising and deconvolution methods.

In literature, there is a plethora of works aiming to tackle
the hyperspectral image deconvolution problem, following
various perspectives and making different assumptions. In
particular, several baseline methodologies employ filter-based
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approaches, such as the 3D Wiener filter [5] and the Kalman
filter [4], to tackle the deconvolution problem. Other ap-
proaches utilize the Fourier and wavelet domains to compute
efficient solutions for the hyperspectral image restoration
problem [6]. Considering the highly ill-posed nature of
the examined problem, many approaches incorporate proper
priors to enhance the restoration performance. More specifi-
cally, in [7] the deconvolution solution considers spatial and
spectral priors under passivity constraints. In [8], an online
algorithm is employed based on a sliding-block regularized
Least Mean Squares (LMS) algorithm. Furthermore, in [9], a
non negative regularized optimization problem was proposed,
using minimum distance and maximum curvature criteria to
estimate the regularization parameters.

Recently, several works have explored the use of regu-
larization terms that are properly learnt from suitable train-
ing data to capture the properties of the signals of interest
[10–12]. These regularization terms are used in place of the
“hand-crafted” regularization terms traditionally employed in
the cost functions of the studied restoration problems, and
have the form of a suitable artificial neural network. This
approach is known as the “plug-and-play” method. So far,
such research efforts have mainly focused on 2D image pro-
cessing inverse problems. The study in [13] considers the
plug-and-play approach to tackle the HSI deconvolution prob-
lem. However, it should be highlighted that the plug-and-play
methodology has a limitation, since the neural network (reg-
ularizer) is trained independently of the inverse problem at
hand and the degraded data, thus requiring massive amounts
of training data to obtain satisfactory results.

Different from the above studies, in this work, we extend
the potential of the learnable regularizers in the hyperspectral
deconvolution problem. In more detail, by combining a neu-
ral network that acts as a spatial and spectral prior for hyper-
spectral images and a data fidelity term, we propose a novel
cost function for hyperspectral deblurring. Accordingly, this
problem is solved efficiently by employing the half quadratic
splitting (HQS) method [14]. In the sequel, we consider that
the iterative algorithm thus obtained can be incorporated into
a deep unrolling methodology [15, 16], where a fixed num-
ber of iterations are unrolled to form a neural network with
specific structure. Deep unrolling offers the possibility forIC
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end-to-end training of the resulting neural network, so as to
better adapt to the problem at hand. However, due to com-
putational constraints, the number of unrolled iterations must
be kept small [17]. In view of this, in this work we focus on
a more efficient architecture based on the Deep Equilibrium
(DEQ) approach [18]. The deep equilibrium approach aims
to express the entire deep learning architecture derived from
the iterative algorithm as an equilibrium (fixed-point) com-
putation, corresponding to a neural network with an equiva-
lent infinite number of layers. A great benefit from this di-
rection is the fact that the proposed DEQ network is highly
interpretable, as its parameters have a direct correspondence
to the parameters of the involved iterative algorithm, whose
operation is well understood and justified [19]. Furthermore,
the parameters of the neural network can be trained end-to-
end, thus providing markedly better results as compared to
the state-of-the-art, plug-and-play method in [13]. The au-
thors of [20] have explored the applicability of this method-
ology to solve 2D image reconstruction problems. Different
from that method, in our study the focus is on hyperspectral
imaging aiming to derive a highly interpretable deep equilib-
rium network for the HSI deconvolution problem. To the best
of the authors’ knowledge, this is the first study that employs
the deep equilibrium modeling for tackling the hyperspectral
deconvolution problem.

2. PROBLEM FORMULATION

Consider a degraded hyperspectral image Y ∈ RM×N×d and
its corresponding ground truth (clean) image X ∈ RM×N×d,
where M,N denote the spatial dimensions of the images and
d corresponds to the spectral dimension (i.e., number of spec-
tral bands) of the images. Adopting the linear degradation
model of [13, 21] and under the assumption that the blurring
kernel remains constant across the spectral dimension (i.e.,
Hi = Hc for i = 1 . . . d), the i-th spectral band of the de-
graded image Y i ∈ RM×N can be modelled as

Y i = Hc ⋆Xi +W i, i = 1, . . . , d, (1)

where ⋆ denotes the convolution operator, Hc is the blurring
kernel that is common for all spectral bands, Xi is the ground
truth image at the i-th spectral band and W i is a zero-mean
Gaussian noise term. Given the corrupted hyperspectral im-
age Y = {Y i}di=1, the scope of this work is to recover the
corresponding ground truth image X . In this work we tackle
this inverse problem by considering learnable regularizers,
trained so as to capture the underlying inherent structure of
the considered hyperspectral images, and leverage this idea
by employing a deep equilibrium approach. In particular, we
propose the optimization problem

argmin
X

1

2

d∑
i=1

∥Y i −Hc ⋆Xi∥2F + λR(X) , (2)

that consists of a data consistency term and a learnable reg-
ularizer R(·) aiming to capture the spatial and spectral de-
pendencies of the whole estimated hyperspectral image X =
{Xi}di=1. Moreover, λ is the regularization parameter.

3. PROPOSED METHOD

3.1. HQS solver for the proposed optimization problem

To effectively tackle (2), the Half Quadratic Splitting (HQS)
[14] methodology is employed, thus deriving an equivalent
constrained version of (2), i.e.,

argmin
X

1

2

d∑
i=1

∥Y i −Hc ⋆Xi∥2F + λR(Z) (3)

s.t. Z −X = 0,

where Z ∈ RM×N×d denotes an auxiliary variable. The cor-
responding augmented Lagrangian function then becomes

L =
1

2

d∑
i=1

∥Y i −Hc ⋆Xi∥2F + λR(Z) +
b

2
∥Z −X∥2F (4)

where b is a penalty parameter. Hence, from (4) a sequence
of individual sub-problems emerges:

X(k+1) = argmin
X

1

2

d∑
i=1

∥Y i −Hc ⋆Xi∥2F +
b

2

∥∥∥Z(k) −X
∥∥∥2

F

(5a)

Z(k+1) = argmin
Z

λR(Z) +
b

2

∥∥∥Z −X(k+1)
∥∥∥2

F
. (5b)

Focusing on sub-problem (5a), and considering that the blur-
ring kernel is the same across the spectral dimension, a more
compact solution can be derived by utilizing the convolution
theorem, thus the problem in (5a) can be written in the Fourier
domain as follows

X̃
(k+1)

= argmin
X̃

1

2

∥∥∥Ỹ − H̃ ⊙ X̃
∥∥∥2

F
+

b

2

∥∥∥Z̃(k) − X̃
∥∥∥2

F
(6)

where Ỹ = {F(Y i)}di=1, H̃ = {F(Hi)}di=1, X̃ = {F(Xi)}di=1

Z̃ = {F(Zi)}di=1denote the concatenation of the discrete 2D
Fourier transforms for each spectral band of the respective
spatial domain signals (i.e., Y i,Hi,Xi,Zi), F(·) is the 2D
Fourier transform and ⊙ is the element-wise multiplication
operator. The solution of sub-problem (6) is given by

X̃
(k+1)

= (H̃ ⊙ H̃ + b 1)−1 ⊙ (H̃ ⊙ Ỹ + bZ̃
(k)

) . (7)

where 1 is a matrix with ones. Additionally, sub-problem (5b)
can be written as follows

Z(k+1) = argmin
Z

1

2(
√

λ/b)2

∥∥∥Z −X(k+1)
∥∥∥2

F
+R(Z) (8)

Based on Bayesian estimation theory, relation (8) can be be
interpreted as a Gaussian denoiser with noise level (

√
λ/b)

[11]. In light of this, we employ a neural network fθ(·) to act
as denoiser whose weights ( θ), can be learned from training
data, and thus it can be designed with properties adapted to
the signals of interested. Thus, equation (8) can be written as

Z(k+1) = fθ(X
(k+1)) (9)

Thus, the iteration map consists of the following equations:
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Z(k) = fθ(X
(k)) (10a)

Z̃
(k)

= {F(Z
(k)
i )}di=1 (10b)

X̃
(k+1)

= (H̃ ⊙ H̃ + b1)−1 ⊙ (H̃ ⊙ Ỹ + bZ̃
(k)

) (10c)

X(k+1) = {F−1(X̃i
(k+1)

)}di=1 (10d)

where F−1(·) denotes the 2D inverse Fourier transform.
Note that the neural-network (denoiser) fθ can be pre-trained
offline via the loss function

∑P
p=1 ∥fθ(X

p +W ; θ)−Xp∥2F ,
employing pairs of generated noisy hyperspectral images (us-
ing Gaussian noise, denoted as W ) and their corresponding
ground truth versions denoted as {Xp +W,Xp}Pp=1.

3.2. Proposed Deep equilibrium model

Preliminaries: Deep equilibrium (DEQ) models aim to de-
sign (equivalent) infinite-depth neural networks by express-
ing the entire deep architecture as an equilibrium (fixed point)
computation [18]. Consider a generic K-layer deep feedfor-
ward model expressed by the following recursion

x(k+1) = g
(k)
θ (x(k); y) , k = 0, 1 . . .K − 1, (11)

where k is the layer index, x(k) denotes the output of the k-
th layer, y is an input common to all the layers and g

(k)
θ (·)

stands for some nonlinear transformation that corresponds to
the operation of the k-th layer of the neural network.

DEQ models assume that the nonlinear transformation is
exactly the same for all the layers of the considered neural
network. We denote this common transformation as gθ(·).
Under this “weight tying” strategy, in [18] it was recognised
that every output of such an infinite depth should be a fixed
point of the transformation (iteration map) gθ(·), thus obeying
the equation

x⋆ = gθ(x
⋆; y) . (12)

Proposed model: Starting from the optimization algorithm in
(10), some possible directions to proceed further could be the
following. One approach would be the so-called ”plug and
play” method, that is, to pretrain a neural network and use it
in ((10a)) assuming that its parameters remain constant during
the iterative process. Another approach would be to consider
a fixed number of iterations of (10), unroll these iterations to
generate an equivalent deep learning architecture, and train
the parameters of this model end-to-end, an approach known
as deep unrolling. Thus, for K iterations of the HQS solver,
we can derive a deep learning network with K layers. How-
ever, due to computational constraints the number of unrolled
iterations must be kept small [17]. Given the drawbacks of
the plug-and-play approach [20] and the complexity require-
ments of the deep unrolling method [17], in this work we fol-
low an alternative approach, known as the deep equilibrium
method, corresponding to an infinite-depth and more efficient
architecture. In particular, we denote the operation of the four
equations in (10) as gθ(X,Y ), and rewrite it as

X(k+1) = gθ(X
(k);Y ) . (13)

𝑍 = 𝑓𝜃(𝑋) ෨𝑋 = ෩𝐻⊙ ෩𝐻 + 𝑏𝟙
−1
(෩𝐻⊙ ෨𝑌 + 𝑏 ෨𝑍)

𝑔𝜃(𝑋; 𝑌)

𝑋 = {ℱ−1( ෨𝑋𝑖)}𝑖=1
𝑑

෨𝑍 = ℱ(𝑍𝑖)}𝑖=1
𝑑

Fig. 1. An illustration of the proposed end-to-end Deep equi-
librium model, derived from the iteration map in eq. 10.

Furthermore, similarly to algorithm unrolling, we consider
that equation (13) is used to construct an equivalent deep
learning model, but, different from algorithm unrolling, we
consider that this model has an infinite number of layers. In-
terestingly, if we consider that the iteration in (13) is applied
an infinite number of times, then the resulting output should
be a fixed-point of the iteration map gθ(X,Y ) and thus obey
the equation

X⋆ = gθ(X
⋆;Y ) . (14)

This fact can be used to significantly accelerate the compu-
tation of the outputs of the considered infinite-length model,
termed deep equilibrium model, as also discussed in the se-
quel. Also, the parameters of the proposed model (i.e., the
neural network fθ(·) and the penalty parameter b) can be
trained end-to-end, using the loss function

P∑
p=1

∥gθ(X⋆,p,Y p)−Xp∥2F , (15)

where {Xp,Y p} represent P suitable training pairs of clean
hyperspectral images and the corresponding noisy and blurred
images. Also, gθ(X

⋆,p;Y p) = X⋆,p denotes the output
of the supposed infinite length neural network when the de-
graded hyperspectral image Y p is applied at the input. Figure
(1) illustrates the proposed architecture.

Efficient computation of the forward pass: During the
training and the testing phases of the proposed model, several
fixed points must be calculated given the iteration map in (10)
and some degraded hyperspectral images. A simple, yet com-
putationally demanding, approach is to apply the equations
given in (13) until convergence, i.e., until X(k+1) and X(k)

are sufficiently close to each other. However, the computation
of fixed points for iterative mappings is a well studied prob-
lem, and various acceleration methods have been proposed.
In this work, the Anderson acceleration methodology [22] is
used to accelerate the process of estimating fixed points.
Efficient computation of the backward pass: During the back-
propagation stage, in order to avoid backpropagating though
a large number of fixed point iterations, the methodology
proposed in [18], [23] is employed to express the backprop-
agation parameter update step as a fixed point computation
problem, which can be integrated in standard automatic dif-
ferentiation tools. Due to space limitations the details of this
part are omitted.
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4. EXPERIMENTAL PART

Dataset and experimental set up: To highlight the efficacy
of the proposed deep equilibrium model for tackling the HSI
deconvolution problem, we employed two publicly available
hyperspectral datasets, that is CAVE [24] dataset consisting
of 32, 512× 512× 31 images and Harvard [25] dataset com-
prised of 50, 1024 × 1024 × 31 images, with d = 31 spec-
tral bands of 10 nm, covering the visible spectrum 400-700
nm. Following the exact same experimental set up with study
in [13], we used the following blurring kernels and Gaussian
noise with standard deviation σ to create the degraded im-
ages: (a) 15× 15 Gaussian kernel with bandwidth σk = 1.6,
and σ = 0.01, (b) 15 × 15 Gaussian kernel with bandwidth
σk = 2.4, and σ = 0.01, (c) 15 × 15 Gaussian kernel with
bandwidth σk = 1.6, and σ = 0.03, (d) Circle kernel with
diameter 7, and σ = 0.01, (e) Square kernel with side length
of 5, and σ = 0.01. Similarly to [13], the first 20 images
from the CAVE dataset were employed for training and the
rest were used as test set. Regarding the Harvard dataset, the
first 30 were used as training set and the rest as test set.
Neural Network Architecture: Concerning, the neural net-
work fθ(·), we employed a network consisting of 5 layers,
where each layer has 128 filters with size 3× 3. Additionally,
the ReLU was used as activation function. The CNN network
first was pre-trained using pairs of noisy images corrupted by
Gaussian noise and their corresponding ground truth images.
During this training process the ADAM optimizer was used
with learning rate equal 1e − 04 and batch size equal to 16,
whereas the number of epochs was set to 300.
Proposed Model-Parameter Setting: Focusing on the pro-
posed model, we employed the Anderson acceleration proce-
dure [22] for the forward and backward pass fixed-point iter-
ations. In particular, the number of fixed-point iteration was
set to 20. Finally, during the end-to-end training stage of the
proposed model, the ADAM optimizer was employed with
learning rate equal 1e− 04, batch size equal to 6 and number
of epochs to 250.
Compared methods: To validate the quality of the estimated
hyperspectral images, we used the Peak Signal to Noise Ra-
tio (PSNR), the Structural Similarity Index (SSIM) [26] met-
rics and the Spectral Angle Mapper (SAM) [27], comparing
the proposed deep equilibrium model with the approaches
of [13], [28] and [7]. Method [13] is a plug-and-play ap-
proach learning offline an unknown regularizer, whereas the
other methods employ well-designed spectral and spatial pri-
ors. The methods [7,28] were selected because they constitute
well-established/benchmark methods. Note that the state-of-
the-art method [13] was also compared with the previously
mentioned approaches.

Hyperspectral Image Deconvolution Results : Tables
1 and 2 summarize the average quantitative results of in
comparison with several well-established hyperspectral de-
blurring algorithms. It is evident that the proposed deep equi-

Table 1. Results on the CAVE dataset
Metric Method 1 [27] Method 2 [7] Method 3 [13] Proposed

PSNR 37.42 36.53 41.17 41.78
(a) SSIM 0.9257 0.9474 0.9602 0.9793

SAM 11.19 8.24 6.27 5.94
PSNR 35.34 34.69 35.96 38.51

(b) SSIM 0.9058 0.9255 0.9199 0.9647
SAM 10.98 8.49 7.77 6.68
PSNR 30.04 35.65 37.42 39.65

(c) SSIM 0.6140 0.9161 0.9395 0.9678
SAM 25.83 12.23 6.46 6.13
PSNR 36.10 35.60 39.88 41.77

(d) SSIM 0.9116 0.9350 0.9477 0.9801
SAM 11.52 8.41 6.80 6.01
PSNR 37.05 36.53 42.71 45.21

(e) SSIM 0.9211 0.9463 0.9669 0.9884
SAM 11.77 8.33 6.29 5.55

Table 2. Results on the Harvard dataset
Metric Method 1 [27] Method 2 [7] Method 3 [13] Proposed

PSNR 38.18 38.65 41.11 42.57
(a) SSIM 0.9133 0.9353 0.9486 0.9626

SAM 8.41 5.06 4.84 4.10
PSNR 36.88 37.22 38.85 40.10

(b) SSIM 0.8903 0.9110 0.9202 0.9335
SAM 8.07 5.10 4.77 4.54
PSNR 30.51 37.07 38.95 40.87

(c) SSIM 0.5947 0.9046 0.9165 0.9439
SAM 23.24 8.22 4.58 4.02
PSNR 37.35 38.08 40.50 42.66

(d) SSIM 0.8992 0.9232 0.9384 0.9612
SAM 8.58 5.08 4.82 4.33
PSNR 37.92 38.77 41.80 43.13

(e) SSIM 0.9090 0.9347 0.9541 0.9669
SAM 8.86 5.08 4.87 4.21

librium method constantly outperforms the other approaches
in various blurring scenarios. Additionally, for high levels of
noise, the proposed end-to-end model is able to maintain high
metric values in all cases. Compared to the plug-and-play
method in [13], the proposed methodology provides notably
better reconstruction results, since the CNN denoiser along
with the penalty parameters derived from the proposed op-
timization problem are optimized end-to-end based on the
quality of the estimated results and adapted to the problem
at hand. It should be highlighted that the superiority of the
proposed method is achieved with no additional complexity
as compared to the other approaches.

5. CONCLUSIONS

In this work, the problem of hyperspectral image deconvo-
lution was studied. Considering the ill-posed nature of the
examined problem, a regularized optimization problem was
proposed, utilizing a learnable CNN to capture the underlying
spectral and spatial dependencies of the hyperspectral data. A
Deep equilibrium model algorithm was developed to solve ef-
ficiently the considered problem, thus forming a highly inter-
pretable and infinite-depth deep learning based architecture.
Extensive numerical results demonstrated the efficacy and ap-
plicability of the proposed method.
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