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Abstract—Deep Learning has revolutionized the field of image 

processing and image compression in particular. A lot of research 

has been done in recent years on the subject of learning-based 

image compression, which has resulted in methods with increased 

compression performance but high computational complexity. 

The most successful methods eradicate the redundancies by using 

entropy modelling. In this paper, we utilize the Discrete Wavelet 

Transform (DWT) as a preprocessing step for a simple 

hyperprior model. The proposed method is compared to both 

traditional and deep learning-based techniques. It proves to be 

superior in lower bit rates, using both Peak Signal-to-Noise Ratio 

(PSNR) and Multi-Scale Structural Similarity (MS-SSIM) as 

metrics for the evaluation of the model. 

Keywords—image compression, hypeprior, Discrete Wavelet 

Transform, deep learning, entropy modelling, low bit rate 

I.  INTRODUCTION  

Image compression is an area of signal and image 

processing that has been continuously researched in recent 

years due to its use in efficient storage and transmission of 

image data. In the past decades, a number of standards has 

been developed such as JPEG [1], JPEG2000 [2], BPG [3] etc. 

However, the rapid rise of artificial intelligence has led to the 

incorporation of machine and deep learning methods into this 

subject. 

The traditional codecs remove redundancies from the input 

image data mainly by using transform coding followed by 

quantization, and entropy coding. For example, JPEG and 

BPG utilize the Discrete Cosine Transform (DCT), while 

JPEG2000 uses the Discrete Wavelet Transform (DWT) [4]. 

Many deep learning techniques tend to follow the same 

sequence, replacing the transform with neural networks, in 

order to jointly optimize these three steps [5]. 

 

Over the past years, deep learning models have shown 

great success to the problem of image compression. In these 

approaches, various types of neural networks have been 

utilized to create a more compact representation of the input 

data, such as Convolutional Neural Networks (CNNs), 

Autoencoders (AE), Recurrent Neural Networks (RNNs) and 

Generative Adversarial Networks (GANs) [6-10]. In end-to-

end image compression, the compressed feature map also 

keeps certain spatial correlation due to the limited receptive 

field of convolutions [10].  Thus, entropy modelling is used 

for the elimination of the remaining redundancies. Entropy 

modelling that aims to estimate the rate of the codes plays a 

vital role in learned image compression methods. According to 

Shannon’s source coding theorem [10], given a sequence of 

codes y = {y0,..., yN }, the optimal code length of y should be 

 

C = Ey [ − ∑N
i=0 log2 P(yi)]           (1) 

 

Thus, estimating accurate probability distribution functions, 

i.e., P(yi), for the codes is essential in determining the 

compression rate [11]. End-to-end image compression 

methods with a variational autoencoder (VAE) are popular in 

this field, which introduce a hyperprior [12] model to transmit 

the distribution of latent representation. 

 

In this work, we investigate the application of DWT as a 

preprocessing step to an autoencoder with a hyperprior, for 

low bit rates. The main contributions presented in this paper 

are: 

• the use of a different representation method for the 

images when given as inputs to the autoencoder, 

• the application of the wavelet transform as a 

preprocessing step for entropy-modelling techniques. 

 

The rest of the paper is organized as follows. In Section II a 

review of deep learning-based image compression methods is 

provided. Section III demonstrates the details of the proposed 

techniques and the network architectures used in this work. The 

experiments performed for the evaluation of the model and 

their results are shown in Section IV. Finally, Section V 

summarizes the outcomes and outlines future work. 

II. RELATED WORK 

Many deep learning-based image compression methods 

follow the logic of traditional codecs which dictates that a 

transform is followed by quantization and entropy coding, 

substituting one of the steps by a deep learning algorithm. 

These techniques assume that all the codes are independent and 

identically distributed. They also suppose that all of them 

follow the same probability distribution, in order to have 

easier-to-handle  entropy models [11]. The author of  [13]  uses 
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Fig. 1.  Οperational diagram of the baseline factorized prior (a) and the 
hyperprior (b). The boxes represent transformations of the data. 

The boxes U|Q indicate either the addition of uniform noise during 

the training of the model or quantization and arithmetic coding 

during testing. 

 
 

 

trellis coded quantization in lieu of a more basic form. 

 

However, the most commonly replaced step is the 

transform.  Toderici et al. [14] created an RNN to compress 

32 × 32 images in a progressive manner and they later 

extended their research to bigger images by introducing a 

BinaryRNN for context-based entropy modelling [7]. 

 

Ballé et al. [8] started off by replacing the typical rectified 

linear unit function (ReLU) with a generalized divisive 

normalization (GDN) activation function in an end-to-end 

manner and modelled the entropy with a factorized prior. In 

their following work [12], they assume a zero-mean Gaussian 

distribution for each code, with the deviation estimated by a 

side information network depending on the hierarchical 

hyperprior. This method has become a benchmark and base 

for many subsequent learned image compression techniques 

by other researchers that utilize entropy modelling [15-18]. 

 

Minnen et al. [15] combined the hierarchical hyperprior 

with a context-based autoregressive prior to enhance the 

results of the compression. Lee et al. [16] also introduced an 

autoregressive component to the entropy model. Taking 

advantage of the high correlation of local dependency, 

context-adaptive models contribute to a more accurate entropy 

estimation. However, since these models only capture the 

spatial information of neighboring latents, there is remaining 

redundant spatial information across the entire image. Qian et 

al. [19] built on the architecture introduced by Minnen and 

proposed the combination of a local context, a global 

reference and a hyperprior model to overcome this issue and 

further boost the compression performance.  

 

III. PROPOSED IMAGE COMPRESSION METHODS 

A. Rate-Distortion Optimization 

The goal of our model is to minimize the expected length of 
the compressed bitstream that results from our processing as 
well as the expected distortion of the reconstructed image with 

respect to the original, creating the rate–distortion optimization 
problem that dominates learned image compression: 

 

R+λ·D = Ex∼px[−log2pŷ(q[f(x)])]+λ·Ex∼px[d(x,g(q[f(x)]))]     (2) 

 

where λ is the Lagrange multiplier that determines the desired 
rate (R) – distortion (D) trade-off, px is the unknown 
distribution of natural images, q represents rounding to the 
nearest integer (uniform quantization), y = f(x) is the encoder,  
ŷ = q[y] are the quantized latents and  pŷ is a discrete entropy 
model [19]. The rate is the expected code length (bit rate) of 
the compact representation of the image, and it can be written 
as the cross entropy between the marginal distribution of the 
latents and the learned entropy model [12]. The distortion is the 
expected difference between the reconstructed and the original 
image, as measured by a norm or perceptual metric function, 
e.g., the mean squared error (MSE) or the multi-scale structural 
similarity (MS-SSIM) [20]. The optimization problem can be 
represented as a variational autoencoder. Fig. 1 shows the 
operational diagrams of (a) the factorized prior and (b) the 
hyperprior models. Our technique is based on the hyperprior 
method [12]. 

 

B. Network Architecture 

The architecture of our system follows closely that of Ballé 

[12]. One crucial difference is that in our paper we suggest a 

different representation of the input images before they are 

given to the network. First, we split them into the three color-

channels (Red-Green-Blue). Our method proposes the use of 

the Discrete Wavelet Transform as a preprocessing step, after 

the color-channel splitting. Each of the three new images goes 

through the DWT and produces four sub-images which 

correspond to the approximation, horizontal, vertical, and 

diagonal detail, respectively. Thus, for every image in the 

original dataset we end up with 12 sub-images that are stacked 

together to create a 12-channel image which is given as input 

to the neural network. The chosen wavelet type is the 

biorthogonal 4.4 wavelet, which is similar to the 9/7 wavelet 

and is considered suitable for lossy image compression [4]. 

The proposed framework is illustrated in Fig. 2 and the 

individual network layers are shown in Table I. 
 

We set up the main and the hyper autoencoder as a series 

of linear (convolution/deconvolution) and non-linear 

(GDN/IGDN and ReLU) functions. Similar to other VAE-

based image compression methods, we used a learned encoder 

ga to map the input image x to a latent representation y, which 

is further grouped and rearranged as z by the hyper encoder ha. 

Both outputs are quantized into discrete values and then given 

to a lossless arithmetic coder. Finally, a decoder gs and a hyper 

decoder hs transform ŷ and ẑ to the reconstructed image x̂. 
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IV. EXPERIMENTAL RESULTS 

To compare the compression performance of our proposed 

model, we conducted several experiments using the Tensorflow 

framework. The proposed models are trained on a subset of the 

ImageNet dataset [21], as well as the CLIC dataset, which 

consists of 1258 images.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Afterwards, randomly placed 504 × 504 pixel crops of 

these images were extracted. The dimensions of these crops 

were chosen, so that the 12 sub-images produced by the DWT 

decomposition had a size of 256 × 256 pixels. These sub-

images were stacked together to create the inputs of the  

 

 

 

 

 

 

 

 

 

 

 

 

Encoder Decoder Hyper Encoder Hyper Decoder 

Conv: 5×5 c192 s2 

GDN 

Conv: 5×5 c192 s2 
GDN 

Conv: 5×5 c192 s2 

GDN 
Conv: 5×5 c12 s2 

Deconv: 5×5 c192 s2 

IGDN 

Deconv: 5×5 c192 s2 
IGDN 

Deconv: 5×5 c192 s2 

IGDN 
Deconv: 5×5 c12 s2 

Conv: 3×3 c192 s1 
ReLU 

Conv: 5×5 c192 s2 

ReLU 
Conv: 5×5 c192 s2 

 

Deconv: 5×5 c192 s2 
ReLU 

Deconv: 5×5 c192 s2 

ReLU 
Deconv: 3×3 c192 s1 

 

Conv: convolutional layer, Deconv: deconvolutional layer, c:channels, s:stride 

Fig. 2. The architecture of our method. Q denotes quantization and AE/AD is the lossless arithmetic encoder/decoder 

 

Fig. 3. Model evaluation over the Kodak dataset 

 

TABLE I.  NEURAL NETWORK LAYERS 
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compression network. Minibatches of 8 of the input images at a 

time were used to perform stochastic gradient descent using the 

Adam optimization algorithm with a learning rate of 10−4. With 

this setup, we trained 5 separate models. The mean squared 

error (MSE) was used as the distortion metric in all of them 

and 5 different values of λ (0.001, 0.005, 0.01, 0.05 and 0.1) 

were used, in order to produce a wide range of rate-distortion 

tradeoffs.  

The evaluation of the proposed models was performed on 

the publicly available Kodak dataset [22]. The rate-distortion 

curves are shown in Fig.3. The distortion metrics that were 

used in this paper are the PSNR and the MS-SSIM. 

 In the experiments, we investigate a way of improving the 

results of the classic hyperprior image compression algorithm 

for low bit rates, by using the DWT decomposition of the 

inputs. The average results of the evaluation experiments are 

presented in Table II and an example image is shown in Fig.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 As we can see, the wavelet hyperprior method has much 

better results than JPEG, and even surpasses other traditional 

techniques such as JPEG2000 and BPG. It also outperforms 

Ballé’s method, which was the base upon which our method 

was built. This proves that the utilization of wavelets as a 

preprocessing step is extremely advantageous for low bit rates. 

Additionally, another benefit of our method is its low 

computational complexity. The average test runtime for Ballé 

on GPU was 670.14ms, while for the wavelet hyperprior was 

107.46ms. 

V. CONCLUSIONS 

This work presented a new method of learned image 

compression for lower bit rates, based on the hyperprior model. 

The main contribution of our paper was the use of wavelets as 

a preprocessing step for the entropy modelling method. Our 

approach surpassed both traditional codecs such as JPEG and 

BPG, and other learned compression techniques. An added 

benefit of this methodology was its low computational 

complexity and test runtime. The addition of the DWT resulted 

in smaller bit rates than the simple hyperprior for the same 

value of λ and improved the performance of the neural 

networks. 

 Our next step is the further improvement of the results via 

the utilization of additional entropy models, as well the use of 

other metric functions for the distortion, i.e., the MS-SSIM. 

More experiments will be necessary to drastically improve the 

compression results. This technique is targeted towards low bit 

rates and does not perform as well as other learned image 

compression techniques for higher bit rates. It is our aim to 

implement a more general method as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method 
Results 

Bit rate PSNR (dB) MS-SSIM 

Ballé (2018) 0.39 26.85 0.91 

BPG 0.37 27.11 0.92 

JPEG 0.36 24.67 0.86 

JPEG2000 0.37 26.93 0.91 

Wavelet 

hyperprior (ours) 
0.35 28.42 0.94 

Fig. 4. At similar bit rates, our wavelet hyperprior method provides the highest visual quality on the Kodak dataset 

TABLE II.  COMPARISON OF RESULTS 

 

Authorized licensed use limited to: University of Patras. Downloaded on August 02,2023 at 08:32:12 UTC from IEEE Xplore.  Restrictions apply. 



  

REFERENCES 

[1] G. K. Wallace, “The jpeg still picture compression standard,” IEEE 
Transactions on Consumer Electronics, vol. 38, 1992.  

[2] M. Rabbani and R. Joshi, “An overview of the jpeg 2000 still image 
compression standard,” Signal processing: Image communication, 
vol. 17, no. 1, pp. 3–48, 2002. 

[3] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of 
the high efficiency video coding (hevc) standard,” IEEE Transactions 
on circuits and systems for video technology, vol. 22, no. 12, pp. 
1649-1668, 2012. 

[4] A. Skodras, C. Christopoulos and T. Ebrahimi, "The JPEG 2000 still 
image compression standard," in IEEE Signal Processing Magazine, 
vol. 18, no. 5, pp. 36-58, Sept. 2001, doi: 10.1109/79.952804. 

[5] L. Yuan, J. Luo, S. Li, W. Dai, C. Li, J. Zou and H. Xiong, "Learned 
Image Compression with Channel-Wise Grouped Context Modeling," 
2021 IEEE International Conference on Image Processing (ICIP), 
Anchorage, AK, USA, 2021, pp. 2099-2103, doi: 
10.1109/ICIP42928.2021.9506076. 

[6] O. Rippel and L. Bourdev, “Real-Time Adaptive Image 
Compression,” in Proc. 34th Int. Conf. Mach. Learn., Sydney, NSW, 
Australia, Aug. 2017, pp. 2922-2930. 

[7] G. Toderici, D. Vincent, N. Johnston, S. Hwang, D. Minnen, J. Shor 
and M Covell, “Full resolution image compression with recurrent 
neural networks,” in 2017 IEEE Conf. Comput. Vis. Pattern Recognit. 
(CVPR), Honolulu, HI, USA, July 2017, pp. 5435-5443. 

[8] J. Balle, V. Laparra, and E. P. Simoncelli, “End-to-end optimized 
image compression,” in 5th Int. Conf. Learn. Rep., Toulon, France, 
Apr. 2017. 

[9] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. V. Gool, 
“Conditional probability models for deep image compression,” in 
2018 IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Salt Lake 
City, UT, USA, June 2018, pp. 4394-4402. 

[10] T.M Cover and J.A. Thomas, “Data Compression” in “Elements of 
Information Theory”, 2nd ed., John Wiley & Sons, 2006,                  
pp. 103–142.  

[11] M. Li, K. Zhang, J. Li, W. Zuo, R. Timofte and D. Zhang, "Learning 
Context-Based Nonlocal Entropy Modeling for Image Compression," 
in IEEE Transactions on Neural Networks and Learning Systems, vol. 
34, no. 3, pp. 1132-1145, March 2023, doi: 
10.1109/TNNLS.2021.3104974. 

 

 

 

[12] J. Balle, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, 
“Variational image compression with a scale hyperprior,” in 6th Int. 
Conf. Learn. Rep., Vancouver, BC, Canada, Apr. 2018. 

[13] B. Li, M. Akbari, J. Liang and Y. Wang, "Deep Learning-Based 
Image Compression with Trellis Coded Quantization," 2020 Data 
Compression Conference (DCC), Snowbird, UT, USA, 2020, pp. 13-
22, doi: 10.1109/DCC47342.2020.00009. 

[14] G. Toderici, S. O’Malley, S. Hwang, D. Vincent, D. Minnen., S. 
Baluga, M Covell and R. Sukthankar, “Variable rate image 
compression with recurrent neural networks”, 2015, 
arXiv:1511.06085. [Online]. Available: 
http://arxiv.org/abs/1511.06085 

[15] D. Minnen, J. Balle, and G. D. Toderici, “Joint autoregressive and 
hierarchical priors for learned image compression,” in Proc. Neural 
Inf. Process. Syst., 2018, pp. 10794–10803. 

[16] J. Lee, S. Cho, S-K Beack, “Context-Adaptive Entropy Model for 
End-to-end optimized Image Compression”, Intl. Conf. on Learning 
Representations (ICLR) 2019. 

[17] T. Chen, H. Liu, Z. Ma, Q. Shen, X. Cao and Y. Wang, "End-to-End 
Learnt Image Compression via Non-Local Attention Optimization 
and Improved Context Modeling," in IEEE Transactions on Image 
Processing, vol. 30, pp. 3179-3191, 2021, doi: 
10.1109/TIP.2021.3058615. 

[18] Z. Cheng, H. Sun, M. Takeuchi and J. Katto, “Learned image 
compression with discretized Gaussian mixture likelihoods and 
attention modules,” in 2020 IEEE/CVF Conf. Comput. Vis. Pattern 
Recognit., Seattle, WA, USA, June 2020, pp. 7939-7948. 

[19] Y. Qian, Z. Tan, X. Sun, M. Lin, D. Li, Z. Sun, H. Li and R. Jin.  
“Learning accurate entropy model with global reference for image 
compression”, Intl. Conf. on Learning Representations (ICLR) 2021. 

[20] Z. Wang, E. P. Simoncelli and A. C. Bovik, "Multiscale structural 
similarity for image quality assessment," The 37th Asilomar 
Conference on Signals, Systems & Computers, 2003, Pacific Grove, 
CA, USA, 2003, pp. 1398-1402 Vol.2, doi: 
10.1109/ACSSC.2003.1292216. 

[21] J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, L. Fei-Fei., “Imagenet: A 
large-scale hierarchical image database”, In 2009 IEEE conference on 
computer vision and pattern recognition, 2009. p. 248–55. 

[22] Eastman Kodak, “Kodak Lossless True Color Image Suite (PhotoCD 
PCD0992)”, URL: http://r0k.us/graphics/kodak/, 1993.  

 

Authorized licensed use limited to: University of Patras. Downloaded on August 02,2023 at 08:32:12 UTC from IEEE Xplore.  Restrictions apply. 


