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Abstract—A federated dictionary learning problem, in which
the edge devices have data with different statistical properties,
is considered. A dictionary learning cost function that can lead
to dictionaries that do not exhaust their full representation
capabilities is proposed. The edge devices utilize this algorithm
to design the local dictionaries. Likewise, a new aggregation rule
is proposed for the central server, that takes into account the
particular form of the local dictionaries. Simulation results were
conducted that demonstrated that the proposed approach leads
to solutions that achieve smaller root mean square error, are
more sparse, but most importantly, require significantly smaller
numbers of federated learning rounds to achieve some required
error.

I. INTRODUCTION

Over the last years, we have witnessed a tremendous
interest for data-driven learning methods [1]. In particular, the
remarkable performance of these methods in solving difficult
real-world problems has made them the option of choice for
various modern scientific and technological applications [2],
[3]. Two of the most prominent categories of data-driven
methods are deep-learning approaches [4] and dictionary-
learning [5]. However, the need to train increasingly com-
plex data-driven models requires substantial computational
resources and massive training datasets [6], making centralized
computing architectures unsuitable. Decentralized approaches
are necessary to address these requirements. Nevertheless,
distributed learning is a challenging task and many researchers
are developing efficient algorithms to accomplish this goal.

Distributed data-driven learning methods are generally
classified into three primary categories. The first category
involves distributed nodes (devices) that communicate with
some central node, known as fusion server, to gather data
for centralized processing, as noted in [7]. This approach
is impractical in cases where the local nodes have large
datasets. On the other side, fully decentralized strategies that
are based on local information exchange among neighboring
nodes have been developed in recent years, as discussed in
[8]. More recently, a third category has emerged: Federated
Learning (FL), as described in [9], takes an intermediate
position between the first two categories, proposing a paradigm
where data is collected locally at the edge users, and some
processing is also performed locally. Still, global information
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is shared between a central server and the dispersed devices
(or users), as demonstrated in Fig. 1.

Federated learning methods try to addresses the main
limitations of the methods that fall in the other two categories,
namely the limited storage and computational capabilities of
fusion center-based methods, and the increased communication
requirements of fully distributed architectures. In more detail,
the FL paradigm proposes a protocol in which local nodes
compute local data-driven learning models, and these models
are transmitted to the central server. Thus, data exchange is
avoided, an approach that requires significantly less commu-
nication and is more privacy-aware. In the sequel, the central
node that receives models from a set of clients, employs a
proper aggregation rule to derive a single, global, data-driven
model that, hopefully, inherits characteristics from all the local
models employed in the aggregation process. This approach is
repeated for a number of so-called federated learning rounds.
FL approaches can be classified into three primary categories
[10]: horizontal FL, vertical FL, and federated transfer learn-
ing. These categories arise when the feature and/or index
spaces of the distributed datasets are identical or not identical.

This study focuses on FL techniques for addressing the
dictionary learning problem which has numerous applications
[11], [12], [13]. While centralized algorithms for this problem
are efficient [14], the research on decentralized methods has
mainly focused on fully distributed strategies, such as [15],
[16] and [17]. Recently, FL-based approaches have been pro-
posed for dictionary learning [18], [19]. Unlike most previous
works that focused on i.i.d. scenarios for dictionary learning,
we suggest a suitable non-i.i.d. dictionary learning problem at
the edge devices to enable dictionary aggregation at the central
server. Additionally, we propose a proper aggregation rule to
combine the dictionaries at the central server.

II. PROBLEM FORMULATION

We consider a set of N nodes (in the following, we also
use the terms users or edge devices to refer to these entities),
where each node n ∈ N = {1, 2, . . . , N} possesses a local
dataset, that we represent by the matrix

Y n ∈ R
d×mn , n ∈ N , (1)

where d denotes the dimension of the local data samples and
mn is the number of column vectors in the dataset of user n,
while typically mn >> d.979-8-3503-3959-8/23/$31.00 ©2023 IEEE
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Fig. 1. The Federated Learning model considered, where a number of edge
devices collaborate via a central server in order to solve some common data-
driven learning task. Each node n has a local dataset Y n that, in general, has
different size and statistics.

The nodes are interested in computing a common dictionary
matrix D ∈ R

d×K that is suitable for the sparse representation
of the entire dataset, i.e. the concatenation of the datasets
of all the users. Under the Federated Learning approach,
the cooperation of the users for computing such a common
dictionary is accomplished with the help of a central server,
that is able to communicate with all the edge devices and
follows an iterative procedure. In every federated learning
round, each node estimates a local dictionary matrix, sends
this estimate to the central server that applies some aggregation
rule, and the aggregate dictionary is sent back to all the users,
that utilize it to initialize the next local estimation procedure.

III. THE PROPOSED APPROACH

A. Dictionaries and representation capability

Before proceeding to the details of the proposed approach,
it is useful to mention some preliminaries regarding the repre-
sentation of vectors using dictionaries. In essence, the goal of
a dictionary D ∈ R

d×K is to provide sparse representations
of vectors y ∈ R

d, as given by

y ≈ Dg ,

where g ∈ R
K is a sparse vector, in the sense that it contains

only a few, say s, non-zero entries. Although, in a first look,
this may seem as a significant restriction regarding the variety
of vectors y that can be represented in this form, the model is
quite general. This can be demonstrated if one considers that
there are

SD,s =

(

K

s

)

=
K!

s!(K − s)!

possible choices for selecting the non-zero elements in vector
g, and thus, the Dictionary can represent all the vectors that
belong to any of the SD,s linear subspaces described by
selecting s atoms from D. Clearly, this number of subspaces
can be quite large. In the sequel, we use the term capacity to
refer to this number of subspaces.

Among several questions that may arise in such a setting,
one that is relevant to this work is the following: When
performing dictionary learning using some data Y , should we
“consume” all such linear subspaces or is there any benefit
from utilizing only a minimum number of such subspaces,
provided that the error remains within some prescribed bound?
Clearly, if all such subspaces are used, then the respective
dictionary cannot easily accommodate new data that does not
reside in any of such subspaces, without “forgetting” some of

the data on which it has already been trained. This reasoning is
quite relevant in distributed and federated dictionary learning:
Edge users should employ dictionary learning methods that
accurately describe their local data without utilizing all the
capacity of their local dictionaries, having in mind that this
facilitates the derivation of an aggregate dictionary at the
central server that can represent the data of all the edge users.

B. Subspace parsimonious dictionary learning

Our scope in this sub-section is to derive a (centralized)
dictionary learning method that tries to minimize the number
of subspaces utilized. This is in agreement with the usual case
where the edge devices do not have big and/or rich datasets.
Our approach into deriving a subspace parsimonious dictionary
learning method is to penalize the use of new atoms from the
dictionary. To this end, focusing on any particular node n, we
propose the following cost function

Cn(Dn,Gn) =
1

2
∥Y n −DnGn∥

2

F + ∥ΛnGn∥1 , (2)

where Dn and Gn denote, respectively, the local dictionary
and sparse approximation matrices at node n, while Λn ∈
R

K×K is a diagonal matrix defined as

Λn =











λn,1 0 · · · 0

0 λn,2

. . . 0
...

. . .
. . .

...
0 · · · 0 λn,K











. (3)

The reasoning for selecting this cost function is that it enables
a different penalty term for controlling the use of each atom.
In particular, if the parameter λn,k is large, then this implies a
large penalty for the use of the k-th atom. Thus, it is possible
to design the matrix Λn, so that the dictionary learning process
will try to utilize a small number of atoms. For example, one
can select

λn,k = λn,0 + (k − 1) · δn (4)

for some parameters λn,0, δn > 0, so that the atoms with
smaller index will yield smaller cost, and thus, will be pre-
ferred over atoms with greater index. Thus, some atoms with
large indexes may not be used at all, thus arriving to a subspace
parsimonious dictionary.

C. Federated dictionary learning

In the context of federated dictionary learning, where the
edge devices may have non-i.i.d. data, it is reasonable to
apply a different atom penalization strategy at each node. This
approach will create groups of atoms that are mainly used at
one edge device, leaving other atoms for the other nodes to
utilize. It should be noted that this approach is different from
using different dictionaries at each node, each with a limited
number of atoms. Rather, the proposed approach can be seen
as a soft version of a method that utilizes separate dictionaries
at each node.

To achieve such an atom personalization approach, we let
node n prefer atoms that have index close to some predefined
atom index that we denote as kn ∈ {1, 2, . . . ,K}. We compute
the atom-index-difference between the k-th index and the
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Fig. 2. An illustration of the atom-index-difference function. The function
d(4, k) is demonstrated, as a function of the atom index k. This function
measures the atom index difference from the atom at kn = 4, in a cyclical
fashion. We have assumed that the number of atoms is K = 32.

“central” index kn in a cyclical manner, as given by the
expression

d(kn, k) = min {|kn − k|, |kn +K − k|, |kn −K − k|} .

To demonstrate this atom-index-difference function, Fig. 2
shows the form of an example function d(4, k) as a function
of the atom index k. The scope of this function is to provide
an integer that measures the distance between k and kn,
considering a cyclical distance (e.g., atoms 1 and K have
d(1,K) = 1).

The parameters λn,k in a federated dictionary learning
setting can be given by the expression

λn,k = λn,0 + d(kn, k) · δn , (5)

in a fashion similar to Equation (4). Finally, the parameters kn
can be equally spaced in the interval [1,K], for example

kn = 1 + (n− 1)

⌊

K

N

⌋

, n = 1, 2, . . . , N . (6)

D. Atom-specific aggregation rule

The proposed approach can be combined with a simple
averaging rule, that gives the aggregated dictionary as the
average of the dictionaries provided to the server by the clients.
Also, other aggregation rules may be employed, for example,
one that first aligns the atoms of the dictionaries so that the
sum of Euclidean distances is minimized [20]. However, in
this work, we propose an atom-specific combination rule that
combines each column of the dictionary using independent
weights. More specifically, we exploit the fact that the atoms
have been (softly) assigned to the clients, in the sense that the
atoms closer to the index kn are mostly used by the n-th edge
device. More generally, the smaller the value of λn,k the more
likely is that atom k is used by node n. Thus, we define the
following weights

wn,k =
maxk′(λn,k′) + λn,0 − λn,k

∑N

n′=1
maxk′(λn′,k′) + λn′,0 − λn′,k

(7)

Using these weights, we define

W n =











wn,1 0 · · · 0

0 wn,2

. . . 0
...

. . .
. . .

...
0 · · · 0 wn,K











, (8)

and we arrive at the following atom-specific aggregation rule

Dagg =

N
∑

n=1

Dn ·W n , (9)

where Dagg denotes the aggregate dictionary computed at the
server. It is easy to verify that the previous aggregation rule
reduces to a simple averaging rule, in the case where δn = 0.

IV. NUMERICAL RESULTS

In order to validate the derivations presented in the pre-
vious, some numerical results were conducted. In particular,
we simulated a federated dictionary learning scenario with
N = 4 edge devices. The data of each edge device was created
synthetically, where for each device 8 randomly selected atoms
were employed to generate mn = 2000 vectors of dimension
d = 32. Each data vector was generated after randomly
selecting 4 of the 8 atoms of each node, and generating 4
random Gaussian weights to construct a weighted average of
the selected atoms. Thus, the data on each client has different
statistical characteristics.

Each edge device tries to minimize its local cost, given
in Equation (2), using an alternating optimization approach,
where a proximal gradient descend algorithm is used to per-
form optimization regarding the matrix Gn, while a projected
(normalizing the atoms to have unit length is a projection oper-
ation) gradient descend algorithm is used to optimize the cost
function regarding the local dictionary Dn. Each edge device
performs T = 200 such local alternating optimization steps
before sending the dictionary obtained to the central server.
It should be noted that the case in which the edge devices
perform such a large number of iterations constitutes a more
challenging problem for aggregation, since the dictionaries sent
to the central server become significantly different [20]. The
edge devices use a common value for the parameters λn,0

and δn. We simulate 50 federated learning rounds using the
above settings, where the aggregation rule given by Equation
(9) is employed at the central server. In order to demonstrate
the effectiveness of the proposed approach, we compare its
performance against an approach in which the matrix Λn is a
diagonal matrix with elements equal to λn,0, i.e., the subspace
parsimonious feature proposed is not in effect. It should be
noted that, for δn = 0 the proposed approach reduces to a
scenario in which all nodes solve the simple LASSO problem,
while the aggregation rule reduces to a simple averaging rule.

The global root mean square error as a function of the fed-
erated learning round is demonstrated in Fig. 3. We compare
the performance of the simple scheme, corresponding to the
case where δn = 0, with the proposed subspace parsimonious
approach. We conducted a large number of simulations for
various values for the parameters λn,0 and δn and Fig. 3
shows the best results for each of the considered schemes.
It is evident from Fig. 3 that the proposed approach, in the
scenario considered here, is able to provide solutions with
smaller root mean square error which are simultaneously more
sparse, as compared to the simple approach. More importantly,
the proposed approach converges significantly faster that the
simple approach: For achieving a root mean square error
equal to 0.01, the proposed approach requires 25 federated
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Fig. 3. Global root mean square error as a function of the federated learning
round performed.

learning rounds while the simple approach requires more than
50 federated learning rounds.

In order to get a better insight of the internals of the
considered federated dictionary learning approaches, Fig. 4
demonstrates the average (over the edge devices) local root
mean square error, as a function of the local iteration index,
where only the 5 first federated learning rounds are shown.
From this figure, it is evident that the averaging operation
performed at the central server has a negative effect to the
local root mean square errors. This is well justified, since the
data at the various nodes has different statistical characteristics,
and the averaging operation tries to reduce such dissimilarities.
Furthermore, we note from Fig. 4 that the proposed subspace
parsimonious approach is able to better adapt to the particulari-
ties of the local data, as demonstrated by the faster reduction of
the average local root mean square error after each dictionary
aggregation round.

V. CONCLUSIONS

In this work, a federated dictionary learning problem with
non-i.i.d. data at the edge devices was considered. A dictionary
learning method that does not exhaust the number of linear
subspaces used by the local dictionaries was proposed. The use
of the proposed method in a federated dictionary learning sce-
nario was studied and a proper aggregation rule was proposed.
Simulation results were conducted on syntherically generated
data, which demonstrated that the proposed approach yields
solutions with smaller root mean square error, that are also
more sparse, and converge significantly faster, as compared to a
simpler LASSO-based federated dictionary learning approach.

REFERENCES

[1] G. Strang, Linear Algebra and Learning from Data. Wellesley-
Cambridge Press, 2019.

[2] F. Provost and T. Fawcett, “Data science and its relationship to big data
and data-driven decision making,” Big data, vol. 1, no. 1, pp. 51–59,
2013.

[3] S. J. Qin, “Survey on data-driven industrial process monitoring and
diagnosis,” Annual reviews in control, vol. 36, no. 2, pp. 220–234, 2012.

0 100 200 300 400 500 600 700 800 900 1000

Local Iteration Index

10
-3

10
-2

10
-1

10
0

A
v
e
ra

g
e
 L

o
c
a
l 
R

o
o
t 
M

e
a
n
 S

q
u
a
re

 E
rr

o
r

0

0

Fig. 4. Average local root mean square error as a function of the local
iterations performed, focusing on the first 5 federated learning rounds

[4] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.
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