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ABSTRACT
This paper presents a computer-aided diagnosis scheme
for the detection of prostate cancer. The pattern recog-
nition scheme proposed, utilizes fused dynamic and mor-
phological features extracted from magnetic resonance im-
ages (MRIs). The performance of the proposed scheme
has been evaluated through extensive training and testing
on several patient cases, where the staging of their con-
dition has been previously evaluated by both ultrasound-
guided biopsy and radiological assessment. The classifi-
cation scheme is based on Probabilistic Neural Networks
(PNNs), whose parameters are estimated using the Expecta-
tion-Maximization (EM) algorithm during a training phase.
Fusion of the image characteristics is performed by prop-
erly aligning the respective TI-weighted dynamic and T2-
weighted morphological images, allowing accurate feature
selection from both images. The proposed classification
scheme as well as the effect of fusion on the extracted fea-
tures is tested, with respect to the correct classification rate
(CCR) of each case.

Index Terms- Pattern recognition, Biomedical mag-
netic resonance imaging, Neural network applications

1. INTRODUCTION

In recent years, prostate cancer has been established as the
third cause of cancer-related mortality in developed coun-
tries with approximately 10% of men suffering from the
disease [1]. Early detection of prostatic carcinoma is very
important since prostate cancer is better treated at early
stages of the disease. Tests such as the prostate specific
antigen test (PSA), and digital rectal examination (DRE)
are at present the best known markers for early diagnosis
of prostate cancer. However, none of them offers accurate
information about the location and extend of the lesion(s),
unless a radical prostatectomy is performed on the patient.
Biopsy, a rather painful and invasive examination, per-
formed on regions of interest (ROI) in the prostate gland
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offers more accurate results through histological analysis
as far as the extend and location of the tumor is concerned.
However, it has been reported that almost a 10% of incipi-
ent cancers could go undetected due to the inability of the
needle to puncture at the precise location of the tumor.

Recently, several non-invasive imaging techniques such
as ultrasound (TRUS) and magnetic resonance imaging
(MRI) have been used for prostate cancer diagnosis and
staging. High resolution Magnetic Resonance imaging has
exhibited a well-known ability in representing a more ac-
curate morphology of soft water-based tissues such as the
prostate gland than other methods, making it an increas-
ingly required modality for the detection of prostate carci-
nomas [2].

The aim of this work is to exhibit the ability of the pro-
posed classification scheme to accurately differentiate be-
tween malignant and normal prostatic tissue. This could
potentially become an invaluable solution to physicians
in their attempt to characterize regions of interest within
the prostate which are uncertain and biopsy has failed to
give a histological profile. Probabilistic Neural Networks
[3], trained using the Expectation Maximization [4] algo-
rithm and a significant number of training vectors of fused
MRI characteristics (features), are used to create the cor-
responding clusters for healthy and malignant tissue.

1.1. Image Acquisition

The proposed classification system has been trained using
10 patient cases. The recruited patients were subjected to
both ultrasound-guided biopsy and MRI examination for a
period of one year. The MR images were acquired by a 1.5
Tesla MRI scanner using a body coil. The prostate gland
was segmented in eight MR image slices of a 6mm thick-
ness and the distance between slices was 1.2 mm. The
types of the collected MR images were T2-weighted mor-
phological images and TI-weighted dynamic contrast en-
hanced (DCE) images. The patients have been injected
with a contrast agent prior to the scanning of the DCE
examination. The dynamic images consist of a series of
thirty images for each slice of the prostate gland, with a
temporal resolution of 9 seconds between them, resulting
to a total of 240 images. The spatial resolution of the
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Figure 1. Schematic diagram of the system used for creating the pattern recognition database

DCE images is 1.5mm per pixel with 256 x 256 pixels
per image. The corresponding T2 weighted morphologi-
cal images were also generated for each of the eight slices,
with a spatial resolution of 0.5 mm per pixel resulting in
512 x 512 pixels per image. The lack of equal resolution
on morphological and DCE images is due to the fact that
the DCE images should provide a sufficient temporal res-
olution that is traded-off against spatial resolution.

2. CREATION OF THE DATABASE

Figure 1 depicts the procedure used for creating the pat-
tern recognition database. The three input components
used to create the series of training vectors for a single
MR slice of a patient consist of 30 DCE TI-weighted im-
ages, the respective T2-weighted image and a marked T2-
weighted image in which expert radiologists have indi-
cated (marked) ROIs of malignant and/or benign tissue in
accordance with the biopsy report. Each of the resulting
training vectors corresponds to a single voxel on the MR
image within the marked ROI. A wavelet based noise re-
moval algorithm is applied on both the dynamic and mor-
phological images to minimize distorting effects of noise
during image acquisition. In the sequel, a motion correc-
tion algorithm is applied to the 30 DCE TI-weighted im-
ages to reduce the effects of patient/organs motion that
may have occurred during image acquisition. The Ti-
weighted and T2-weighted images are aligned using the
method described in Section 2.3. The aligned TI-weighted
and T2-weighted images are finally used to extract fea-
tures that will be used in the pattern recognition algorithm.

2.1. Image Denoising

It is well known that MR images are corrupted by noise
mainly due to thermal agitation of electrons or ions of the
receiver coil and attached electronics as well as due to the
electrolytes in the patient's body [5]. Moreover, due to
the signal processing operations that take place in obtain-
ing the magnitude image from its complex valued Fourier
transform, it is known that such noise follows the Rice
distribution [6]. Thus, Wiener filtering is not the opti-
mal denoising method for MRI. Rather, wavelet domain
thresholding techniques are usually employed that offer

the increased capability of keeping important image char-
acteristics almost unaltered. However, in such methods,
the unknown variance of the noise has to be estimated. In
this work, we employed the minimum absolute deviation
(MAD) method to tackle this problem. MAD is a stan-
dard method that estimates the level of the noise by taking
the median of the modulus of the smallest scale wavelet
coefficients [7].

2.2. Motion Correction

As already mentioned, the 30 Ti-weighted images are ac-
quired over a time period of 270 seconds. This time in-
terval is large enough so that motion of the patient being
examined may have occurred. Furthermore, unintended
micro-motion of the patient's internal organs is unavoid-
able due to organic reasons. Thus, it is expected that the
DCE images are not perfectly aligned with each other and
that a motion correction algorithm should be applied. How-
ever, in this case there are two particularities that should
also be taken into account, namely: (a) the motion due to
the movement of the patients organs results in non-rigid
movement of the images, as different areas of an image
suffer different displacement, and (b) as the 30 TI -weighted
images capture the concentration of the contrast agent that
varies with time (and area of the image), pixel intensities
may change significantly from frame to frame even if they
correspond to the same area of the patient's tissue.

Problem (a) is usually addressed by applying a rigid
motion estimation algorithm locally, for all possible sub-
images of given dimensions, and output the estimated trans-
formation to be valid only for the central pixel of each such
sub-image. In this work, we adopted the aforementioned
methodology in conjunction with a search algorithm for
motion estimation. In particular, for each p x p (p assumed
odd) sub-image, a squared error is computed between all
p x p neighboring (i.e. of relatively small displacement)
sub-images in the previous image, and the one for which
the error was found to be minimum is selected as the cor-
responding sub-image that defines the displacement.

Problem (b) however is quite more complicated. In
this work, we address this issue by aligning not the original
Ti-weighted images, but rather, the "normalized spatial-
gradients" of the Ti images. This is justified based on
the assumption that although the intensities of the origi-
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nal images will have time varying characteristics, impor-
tant features such as edges (which are captured by the
spatial-gradient) remain almost constant with time. More
specifically, let Ii i = 1, 2,.. ., 30 denote the 30 DCE im-
ages to be aligned with each other and Gi denote the mag-
nitude of the spatial-gradient of Ii. Denote also as Gi,,,
the p x p sub-image of Gi whose central pixel has coordi-
nates In, k]. Then, the corresponding normalized image is
obtained as

0I,, [in, q] -
k [in, q] - (1)n,Gi, n, k [Tm, q] -= Gin,k-mC]Gi,n,k (1)

where Gi,n, is the average of the elements of Gi,n,k and
- denotes the Euclidean norm. Finally, the "normal-

ized squared error" between two sub-images Gi,n,k and
Gi-1,n',k is defined as

NSE(Gi,n,k, Gi-l,n,k/) = Gin,k- Gi-1,n,' 2 (2)

and the exhaustive search algorithm minimizes this error
forn' = n-s,... n+sandk' = k-s,...k-+-swhere
the parameter s defines the size of the search area.

2.3. Alignment of Ti and T2 weighted images

TI and T2 weighted MRIs use differentRF excitation pulses
in order to emphasize on different properties of tissues. To
obtain Ti-weighted contrast, differences in the longitudi-
nal component of magnetization must be emphasized. On
the other hand, T2 contrast is revealed if differences in
the transverse relaxation times of different tissues become
apparent [5]. As a result, Ti and T2 images cannot be
aligned using their intensity values, in general.

Thus, to resolve the problem of alignment one must
seek for image features that are independent of the partic-
ular contrast weighting. In particular, we need to estimate
the rotation angle 0, the scaling factor a, and the transla-
tions tx and ty along each axis, that must be applied to the
TI image so that it becomes aligned to the T2 image.

For the scaling factor a, information produced by the
MRI scanner was used. More specifically, by dividing the
values of the field named "spatial resolution" for the two
imaging methods, the value of a = 3 was found.

For the estimation of the rotation angle 0 and the trans-
lation tx, we used the fact that MRI images of the prostate
are symmetric with respect to an almost vertical axis. In
particular, let I denote the image for which we want to
estimate its symmetry axis. Let also Ioo denote image I
after rotation by an angle Oo. Then, the axis defined by the
parameters (Oo, txo) may be associated to the cost

S(I, o,tOxo) = HI/(0o,tX0 -K) - I(00,t0o +K) 2 (3)

where I(0o,tx0+fK) denotes a sub-image of Ioo consisting
of the columns txo + 1,... , txo + K (right sub-image)
and I/0 t K) denotes the sub-image of Ioo consisting
of columns t - 1,.-. ., f-- K, i.e. the columns of IoQ
appear in reverse order. Minimization of (3) with respect

to Ho, t,o can be carried out by direct examination of var-
ious angles in the interval [- e, +(H] and various integer
translations in the interval [C - L, CO+L] where C denotes
the central column of I. Thus, by estimating the symmetry
axes (01, t,,,) and (02,t2) of the TI and T2 images inde-
pendently, we have that 0 02 - 01 and tx = 2-txl.

Finally, for the translation parameter ty, we use the
scaled by a and symmetric Ti-weighted image and the
symmetric T2-weighted image. The parameter ty is esti-
mated as the translation that minimizes the squared error
between the aforementioned images.

2.4. Feature Extraction

Using the aligned Ti and T2 weighted images, vectors of
features are extracted using the benign and/or malignant
areas from the marked T2 image. In particular, for each
pixel of the marked T2 image that belongs to a benign (ma-
lignant) area, the respective coordinates of the Ti image
are computed. Each vector of features consists of the 30
intensity values from the 30 Ti DCE images at the com-
puted coordinates, the intensity value of the T2-weighted
image as well as two spatial moments computed on a 3 x 3
area around the current pixel. These two moments are the
variance and kurtosis of this 3 x 3 area, and they are used to
capture possible inhomogeneity of the area. Thus, a total
of 33 features are used in each vector of features.

Concerning the diagnostic value of the aforementioned
features, the 30 values extracted from the Ti image con-
stitute a dynamic curve, indicating malignancy when the
curve exhibits rapid increase (high slope) and then settles
to a constant value [8]. The value of the pixel on the T2-
weighted image indicates cancer when lower (dark-grey)
intensities appear as opposed to healthy tissue which re-
turns higher (white) intensities [9]. The variance and kur-
tosis offer further morphological information in terms of
the homogeneity of the suspected area.

3. PATTERN RECOGNITION

Probabilistic Neural Networks try to categorize a feature
vector x into two categories Ha or Hb by implementing
the general Bayesian rule

{ H; if Palbfa(X) > Pblafb(X)
d(x) i

Hb if Pa Ibfa(X) < Pblafb(X)
(4)

where Pa and Pb denote the a-priori probabilities of cate-
gories Ha and Hb, respectively, and 1a (lb) denotes the cost
associated with the decision in favor for Ha (Hb) while the
actual decision should be in favor of Hb (Ha). Also, fa (x)
and fb(x) denote the probability density functions of the
respective categories.

The parameters Pa, Pb, la, lb are usually set by experts
about the detection problem at hand. Moreover, the un-
known probability density functions of the categories should
be estimated using training data. In [10], it is proposed to
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Table 1. CCR of the EM-trained PNNs for various training sets. Average CCRs are 70.5 %, 74.8 % and 83.6 %

estimate a general pdf as the average of Gaussian densities.
Thus, we may approximate the density fa (x) as

Ma}

fa (X) = N e(2 ( i )T ( i)

where Xai denote the mean vectors of each Gaussian (cen-
troids), E is the N xN covariance matrix of each Gaussian
kernel and N is the length of the input vectors. Ma is the
number of kernels used, which constitutes also a param-

eter to be estimated. In this work, the centroids Xai, Xbi
of the categories Ha and Hb respectively as well as the
covariance matrix E were estimated according to [II].

4. EXPERIMENTAL RESULTS

The performance of the scheme implemented was assessed
in terms of the Correct Classification Rate and the results
obtained are summarized in Table 1. In particular, Table
1 presents the CCR obtained by the classification system
for 25 cases. Patients PI-P5 have normal tissue while pa-

tients P6-Plo have malignant areas. Thus, in each case, a

pair of patients is excluded from training (one with nor-

mal tissue and one having malignant areas) and their data
is used for testing. The parameters used for the motion
correction algorithm were p = 25 and s = 2. Also,
the search space for the TI - T2 alignment algorithm was

e) C {-2, -0.95, -0.90, .. ., 2} and L = 20. For the pat-
tern recognition algorithm, the a-priori probabilities were

assumed equal to 1/2 and the respective costs were set
equal to unity, i.e. no bias was induced to the classification
system. Finally, the numbers Ma and Mb of the kernels
per category used, were selected as Ma = Mb= 3.

From Table 1 we observe that, in most cases, the clas-
sification system employing fused features obtains better
correct classification rates. Furthermore, in the rest cases,
the CCR obtained is very close to the best CCR between
the two other systems that employ features only from one

imaging modality. Also, the average CCR for the three
systems shows that classification using fused features out-
performs the other approaches by about 10%.

5. CONCLUSIONS

In this work, a database of malignant and benign prostate
tissue was created. The database involved information both
from DCE TI-weighted MRI and from morphological T2-
weighted MRI. This fusion of information was achieved

by properly aligning the images of the two modalities.
Probabilistic neural networks, trained using the EM algo-
rithm, were employed for the detection of malignant or

benign tissue of the prostate. Experimental results verified
that the aforementioned fusion of characteristics increases
the CCR of the proposed automatic detection scheme.
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11 P6 11 P7 IT P8 1_Pf 1tP_o_1
_ TI T2 F TI T2 F TI T2 F TI T2 F Ti T2 F

Pi 73.2 82.1 81.2 63.3 79.8 85.0 89.0 84.6 89.1 84.9 88.4 90.8 56.0 84.5 82.3
P2 83.3 83.0 86.6 43.4 80.4 85.2 99.9 81.7 100.0 91.4 96.6 99.2 59.6 94.6 87.1
P3 56.8 80.3 84.4 82.6 82.3 88.0 63.3 80.6 87.6 64.5 83.1 88.3 58.8 81.5 83.3
P4 57.7 45.0 72.1 56.6 61.5 82.6 74.5 45.7 73.7 72.7 54.3 78.0 55.2 47.1 76.5
P5 ft 79.6 68.2 78.6 56.9 75.4 89.1 90.4 68.6 66.2 85.8 73.3 80.9 64.3 69.6 75.0
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