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Abstract—Wireless Sensor Networks (WSNs) have recently
received great attention from the scientific community, because
they hold the key to revolutionize many aspects of the industry
and our life. The process of collecting the measurements, acquired
by a sensor network into a central sink node, constitutes one of
the main challenges in this area of research and is often referred
to as the sensor reachback problem. In this work, we extend
a recently proposed power and rate allocation algorithm so as
to be able to take into account possible cooperation between
the nodes in the WSN. The derived power and rate allocation
algorithm considers Distributed Source Coding (DSC), in order
to reduce the amount of information that must be transmitted to
the sink. Under the assumption that there are several very bad
channels between nodes and the sink, our method achieves both
a lower peak power threshold, as well as reduced total power
consumption.

I. INTRODUCTION

Recent advances in microelectronics and wireless commu-
nications have enabled the development of low cost, low
power devices that integrate sensing, processing and wireless
communication capabilities. A collection of a large number of
such devices deployed over some territory of interest, consti-
tutes a so-called Wireless Sensor Network (WSN). Typical
applications of WSNs range from medical to military, and
from home to industry. The application of our interest is
Structural Health Monitoring (SHM), which aims at detecting
and localizing the damage in civil structures. One of the most
fundamental problems, arising in such a network, is related
to the transmission of the acquired observations to a data-
collecting node, often termed to as the sink node, which has
increased processing capabilities and more available power as
compared to the sensor nodes. Our main aim is to minimize
the power required to transmit data to the sink, thus saving
energy which is a precious resource for the sensor nodes.

In a typical application scenario for Structural Health Mon-
itoring, nearby sensor nodes would have highly correlated
measurements, and this fact can be exploited in order to
reduce the power consumption. Some of the protocols that
have appeared in the literature, concerning the problem at
hand, are the so-called Spatial Sampling protocols and Group
Testing ones [3]. However, they either impose some distortion
or require too strong correlation among the nodes in order to
be beneficial.

Another approach which could exploit the spatial data
correlation is Distributed Source Coding (DSC). A DSC

technique achieves lossless compression of multiple correlated
sensor outputs [6] without establishing any communication
links between the nodes. A DSC algorithm for the reachback
problem, based on pair matching of the nodes, was proposed
in [4]. A significantly improved algorithm was proposed in [5],
based on application of DSC strategy in a sequential manner.

In contrast to the work in [5], where each sensor node uses
a direct communication channel with the sink node, in this
work we additionally allow cooperation among the nodes.
Under the assumption that there exist unreliable channels
between the sensor nodes and the sink, it can be shown
that this approach achieves less total power consumption as
well as reduced maximum power per sensor node required
for a feasible power allocation to exist. Furthermore, these
performance improvements are obtained at the cost of only a
slight increase in computational complexity as compared to
the complexity of the scheme in [5].

The rest of this paper is organized as follows. In Section II,
we briefly discuss Structural Health Monitoring. In Section III,
we formulate the problem and introduce the background and
related work. Also, we present the channel-aware extension of
recently proposed data gathering algorithm. In Section IV, we
address some of the implementation-related issues. The paper
concludes with Section V.

II. STRUCTURAL HEALTH MONITORING

Structural Health Monitoring (SHM) systems are widely
adopted to monitor the behavior of structures during forced
vibration testing or natural excitation (e.g. earthquakes, winds,
live loading). Structural monitoring systems are applicable to
a number of common structures including buildings, bridges,
aircrafts and ships. The monitoring system is primarily re-
sponsible for collecting the measurement output from sensors
installed in the structure and gathering the measurement data
at the central sink node [1]. Wireless sensor networks offer
tremendous promise for accurate and continuous structural
monitoring using a dense array of inexpensive sensors. In
fact, there are already commercially available sensor platforms
that can meet the demands of SHM, such as Imote2 [2].
The structural response measurements are usually generated at
relatively high data rates (e.g. sampling rates up to 500 Hz).
The measured data should be compressed in a lossless manner
and sent to the sink. This may be achieved by exploiting the



Fig. 1. A span on a bridge.

spatial correlation among the nodes which is present in this
type of monitoring.

For instance, the data collected by the sensors on each
span of a bridge are correlated since they are measuring the
vibration of the same part of the physical structure (Fig. 1). In
addition, in some cases of bridge design, two adjacent spans
are connected to a common anchorage, resulting in the data
across the two spans to be correlated. Similarly, in the case
of large buildings, it is natural to group the sensors of the
several distinct parts of the building (e.g. floors) and exploit
their correlation.

We should also note that the assumption that all sensors
have direct, line-of-sight link to the sink does not hold in the
case of these structures, due to their massive size and shape.
As a result, not all sensors may always have a channel to the
sink of good enough quality.

In the following section, we are going to discuss how
the spatial correlation among the sensors may be exploited
to significantly reduce the data traffic and also present a
channel-aware extension of a recently proposed data gathering
algorithm.

III. FROM INFORMATION THEORY TO REAL
COMMUNICATION PRACTICE

In general, we consider a network of sensors acquiring
data from a civil structure in order to reproduce a physical
phenomenon at the sink. The natural analog signals are first
quantized and then compressed in order to minimize the total
number of bits which will be sent to the sink.

Let us now formulate the problem more precisely. We
consider a dense wireless sensor network consisting of N
nodes, deployed in a civil structure that we wish to monitor.
Each sensor node acquires a measurement Xn (n ∈ N =
{1, . . . , N}) of some physical variable of its environment and
transmits it to a single sink node, for further processing. We
model each such measurement as an instance of a discrete
random variable Xn whose number of possible values equals
the number of quantization levels. Due to the nature of the
event being monitored, we assume that the random variables
Xn are correlated. In this setting, our scope is to devise an
energy efficient method for the sensor reachback problem.
Thus, a proper cost function would be the sum

N∑
n=1

Pn , (1)

where Pn denotes the power required for transmitting the data
of node n to the sink. The minimization of (1), subject to
some proper constraints, shall give an efficient transmission
method for our problem. Apart from the power variables Pn,
the transmission rates Rn of each sensor node, also constitute
a set of variables that need to be defined in an optimal manner.

We assume uncorrelated flat fading channels between the
sources and the sink, corrupted by additive white Gaussian
noise (AWGN). The channel capacity is Ci(Pi) = log(1 +
γiPi),where the noise power is normalized to one and channel
gains γi are constants known to the sink. Since the sink is
supposed to recover all measurements losslessly, the rate at
which each sensor node transmits should satisfy Ri ≤ Ci(Pi).
For the power which may be transmitted by each sensor node,
we also impose a peak power constraint Pmax due to the
fact that every sensor node has limited transmission power
in practice.

A. Information Theory background

Recall that the entropy of a discrete random variable X1,
denoted as H(X1), could be seen as the minimum number of
bits required to encode X1 without any loss of information.
Similarly, the joint entropy H(X1, X2) of two discrete random
variables X1 and X2 can be seen as the minimum number of
bits required to encode X1 and X2 jointly. In case that X1

contains some information about X2, the following inequality
holds H(X1, X2) < H(X1) +H(X2).

First, let us consider the explicit communication scenario
shown in Fig. 2a. A typical joint encoding of X1 and X2

could be achieved by first encoding X2 to H(X2) bits (its
individual entropy), then communicating these bits to the X1

node, and finally encoding X1 to H(X1|X2) bits, which
is the conditional entropy of X1 if X2 is known, and by
definition, joint entropy could be achieved H(X1, X2) =
H(X2) +H(X1|X2). Obviously, exploiting correlation in an
efficient way by applying such a joint encoding scheme across
the whole WSN is infeasible since it would require all nodes
to participate in inter-node communication. Furthermore, the
nodes would need to communicate their individual entropies
among themselves which would prohibitively increase power
consumption.

An alternative strategy, Distributed source coding (DSC),
refers to separate compression and joint decompression of
two or more physically separated sources. The sources are
encoded independently (hence distributed) at the encoders and
decompressed jointly at the decoder [6]. In other words, it is
enough to use H(X1|X2) bits to encode X1 instead of H(X1),
even without communication between two nodes, given that
the decoder has full knowledge of X2 (Fig. 2b). This was
shown for the first time by Slepian and Wolf in 1973 [7].
They showed that two discrete sources X1 and X2 can be
losslessly decoded as long as the rates of two sources are in
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Fig. 2. (a) Explicit Communication. (b) Distributed Source Coding.
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Fig. 3. The Slepian-Wolf region SW1,2 for two sources X1 and X2, defines
the feasible rate pairs (R1, R2) for which joint lossless decoding can be
performed at the destination.

the so-called Slepian-Wolf region (Fig. 3), which is defined
by the following inequalities:

R1 ≥ H(X1|X2)

R2 ≥ H(X2|X1)

R = R1 +R2 ≥ H(X1, X2).

To understand the concept of DSC and how correlation may
be exploited let us consider a simple example in which the
most significant bits in both sequences are the same, while
some last bits, the least significant ones, differ. In fact, in
this example the conditional entropy corresponds to these
(different) least significant bits.

B. DSC in a network case

DSC-based optimal strategies for WSNs were proposed in
[8], [9]. Despite the attempts to design codes for multiple
sources [10], this problem still remains open due to the fact
that these codes achieve suboptimal rates. Thus, in practice
Slepian-Wolf (S-W) codes only for two sources are considered.
These codes can operate at any rate in the S-W region and may
adapt to any change in correlation between the sources [11].

Roumy and Gesbert [4] formulated the pairwise distributed
source coding problem in the network setting. They presented
algorithms for rate and power allocation for two scenarios
while assuming the existence of the direct channels between
each source node and the terminal.

In the first scenario, by assuming noiseless channels be-
tween nodes and the sink, they considered the problem of
deciding which particular nodes should be jointly decoded
at the sink and which rates should be allocated in order the

total sum rate to be minimized. In the second scenario, they
assumed orthogonal noisy channels between the nodes and the
sink and considered minimization of total power consumption.

Also, it was assumed that the sink possesses full knowledge
of the individual and the joint entropies as well as the channel
capacities for each possible pair of nodes.

In short, the resource allocation problem is to determine
the optimal pairing combinations of the nodes in the network
and the corresponding rates for them such that the sum rate
or the sum power is minimized. As a result, the problem
was mapped onto the graph-theoretic problem of choosing
the minimum weight matching of an appropriately defined
weighted undirected graph.

It is of interest to underline that in general the chosen
optimal pairs are not the same for both scenarios considered
(i.e. sum rate or sum power minimization).

Although this approach has significantly smaller cost than
the one which does not apply DSC (all nodes send the
measurements at H(Xn), regardless of their correlation), it
is still far from the theoretically optimal case (DSC for N
sources), especially in cases the correlation among the nodes
is high. This is the result of considering only the correlation
of the nodes in the pairs, and not among the pairs. Motivated
by this, let us examine possible ways to exploit the correlation
further.

C. Hierarchical and Sequential structures

Let us assume a hierarchical transmission structure (Fig.4).
Without loss of generality, let us assume that only 1st level
nodes observe a phenomenon and take the measurements
X1, X2, X3, X4, ..., XN and that these measurements are cor-
related. Since we are restricted to practical codes for pairwise
DSC, let us examine whether hierarchical organization of these
pairs could provide us with any benefit.

Let us assume that each pair applies pairwise DSC sending
total bits equal to the joint entropy, e.g. H(X1, X2) =
H(X1) + H(X2|X1). The question is whether the received
sequences at the 2nd level nodes could be further compressed.
From the information-theoretic perspective, if H(X1, X2) +
H(X3, X4) > H(X1, X2, X3, X4) holds, then it is possible
to have further gain. However, in the general case, it is not
easy to find the correlation pattern of already coded sequences
by S-W codes. Therefore, in order to further exploit the spatial
correlation of X1, X2, X3, X4..., the nodes at 2nd level would
have to decode the received sequences. In other words, the
sequences (X1, X2) and (X3, X4) should be recovered at the
respective nodes at 2nd level.

Let us now consider how the correlation model affects
our possible strategies. If the correlation between the joint
sequences (X1, X2) and (X3, X4) was known, then even with
pairwise DSC codes (which we are practically restricted to),
it would be possible to achieve the optimum overall joint
entropy for four sources, H(X1, X2, X3, X4) = H(X1, X2)+
H(X3, X4|X1, X2). However, for a hierarchical structure of
N = 2i sources, in order to achieve the optimum, the cor-
relation between (X1, X2, ..., X2i/2) and (X(2i/2)+1, ..., XN )



Fig. 4. A hierarchical structure

should be known for each i. This is too difficult to have
in practice and thus we restrict ourselves to the pairwise
correlation model (X1|X2),(X2|X3),. . . ,(Xk−1|Xk), where
k = 2, . . . , N . In this case, for a structure given in Fig. 4,
the best achievable rate at 3rd level could be, for instance,
H(X1|X2) + H(X2) + H(X3|X2) + H(X4|X3). Similarly,
for N sources, the best achievable rate at the sink would be
H(X1) +H(X2|X1) + . . .+H(XN |XN−1).

Alternatively, the previous rate could be obtained by ap-
plying the so-called sequential DSC [12] which is a non-
hierarchical, 1-level structure (Fig. 5). The main idea is to use
previously decoded data as side information for other sources.
For instance, using X1 as side information, and after receiving
H(X2|X1), the sink could decode X2. Next, it could use X2 as
side information for decoding X3, after receiving H(X3|X2),
and so on. Consequently, the transmission of only one node
at the rate of the individual entropy is required, while all
other nodes could transmit at the rates of conditional entropies
resulting in the significant reduction of overall transmitted bits.

It should be noted that the process of decoding Xn is de-
pendent on whether H(Xn|Xn−1) and all previous sequences
have been correctly received or not. If any of these fails to be
received, the chain is broken and Xn is not able to be decoded.

Apart from this reliability issue, it could be concluded that
hierarchical decoding/re-encoding scheme with both pairwise
S-W codes and correlation model attain the same rate as the
1-level sequential DSC scheme. Moreover, the upper layer
nodes could only be seen as simple relay nodes, and there
is no benefit of their decoding/re-encoding capabilities. So,
it can be concluded that, once properly implemented, DSC
strategy is independent of the routing/transmission structure,
which was also discussed in [13], in a more general context.
The reliability issue, or dependence on receiving previous
H(Xn|Xn−1) sequences correctly, will be tackled in the
following subsection by allowing some cooperation between
the nodes.

Also, it should be noted that the case in which all nodes
in the hierarchical structure of Fig. 4 take measurements (not
only at 1st level) is a special case of a 2-D sequential case,
which is actually a directed spanning tree problem (Fig. 6),
as described in [5]. A more general solution was proposed
in [5] which outperforms the one in [4], especially in the

Fig. 5. A sequential structure

Fig. 6. An example of a directed spanning tree

case of high correlation among the measurements of the
nodes. More specifically, the previously explained sequential
strategy was applied so that a node may participate in joint
decoding more than once, while in [4] it was assumed that
each node participates in joint decoding strictly once. They
proposed solutions for both noiseless and noisy channel cases.
The former case was solved by applying an algorithm based
on finding the minimum weight directed spanning tree of
an appropriately defined directed graph. The latter case was
solved by finding the minimum weight matching forest of an
appropriately defined mixed graph.

D. Channel-aware cooperation-based extension of sequential
decoding

To begin with, let us discuss the case that two nodes transmit
their measurements to the sink as in Fig. 2b. In general, the
nodes have to transmit at overall rate which equals to the joint
entropy of their measurements H(X1, X2).

For the noiseless channels, the nodes may transmit at any
rates as long as their rates are on the boundary of Slepian-Wolf
region (Fig. 3). However, it should be noted that there are two
corner points defining the minimum rate each node may have
while the other transmits at its individual entropy (maximum)
rate. For noisy AWGN channels which are of similar quality
(γ1 ≈ γ2), in order to minimize the sum of powers, the sink
should set the rates to be somewhere in the middle of the slope
(R1 ≈ R2). In practice, it may happen that there is a physical
obstacle between a node and the sink causing a very small γ
in the respective link. In such a case when a node experiences
a deeply faded (bad) channel, the sink may compensate for
that to a certain extent by allocating the maximum rate to
the other node (corner point). Therefore, for a given channel,
the minimum transmit power of a node is a function of its
conditional entropy.

In a network setting, it is shown in [5] that the sequential
scheme achieves optimal overall sum rate under pairwise
DSC and pairwise correlation model constraints. Except for
the first node, which transmits at the rate of its individual



entropy, all other nodes transmit at the conditional entropy
rates (corner points). As a result, in the case that a node has
a very bad channel, the sink cannot compensate for it any
further. Although a first node and one of its first neighbors
will be encoded at a rate on the slope (and allocated power
proportional to their channels quality), all other nodes will
have a corner point rate allocation and corresponding power
allocation.

Moreover, in [5] it is assumed that P < Pmax. However, it
should be noted it is required that all previous sequences have
been correctly received in order to decode Xn, thus Pmax
threshold should be set really high to account for any possible
very bad links in the network. This is not desirable since the
sensor nodes are of limited power in practice.

To remedy this problem, we propose a cooperation scheme
where a neighboring node could be used as a relay.

Let us first give a relation between the rate variables Rn
and the respective power variables Pn. This relation will be
given in terms of some functions fn(Rn) that are defined as
the minimum powers required by the nodes of the network in
order to transmit data at a rate Rn from node n to the sink
node:

fn(Rn) = Minimum Pn for rate Rn . (2)

In the case where the nodes of the network are only allowed
to transmit to the sink node using a direct Additive White
Gaussian Noise (AWGN) channel with Signal to Noise Ratio
(SNR) equal to γn = |hn|2/σ2

n we have that

fn(Rn) =
2Rn − 1

γn
, (3)

which is the inverse of the capacity function of the respective
AWGN channel.

Let us assume that the sink performs all calculations regard-
ing the rate and power allocation to the nodes. It possesses
the full knowledge of the correlation between each possible
pair of nodes, the individual entropies of the sources as well
as the channel gains for all node-sink links. In addition, in
our strategy, the sink should also know the internode channels
among the nodes. Therefore, the sink may locate those nodes
which have very bad channels according to some criteria. A
criterion might be a threshold channel gain γthreshold below
which a channel can be considered as a bad one. Another
possibility would be to compare the power allocated to a node
to a maximum power allowed (peak power constraint). We
assume that there are several nodes with bad channels in the
network, sparsely distributed. Next, for a node which has been
denoted as a large power consumer, a test whether to cooperate
with the best of its neighbors is performed as explained below.

Firstly, the sink chooses the best cooperating node from the
subset of neighboring nodes, Sn, which includes the predeces-
sor and all successors of the node with a bad channel. In fact,
in a sequential scheme where the rate allocation is computed
by the directed spanning tree method, each node usually has
one node as predecessor and one or more as successors. The
exceptions are: i) the first node, which represents the root of

the tree and do not have any predecessor ii) last nodes, which
represent the leaves of the tree and do not have any successors.
However, the method can be still applied since they have at
least one neighbor.

Finally, the sink performs a test to decide whether it is
beneficial to cooperate in terms of power consumption.

So, each node may transmit either through the direct channel
to the sink, or use a relay (cooperate), so the decision will be
made between these two available protocols:

1) Direct sink access: Each node n is given the option to
communicate with the sink, via an AWGN channel with
complex gain hn and noise variance σ2

n. Thus, using
γn = |hn|2/σ2

n, the capacity of this link is given by

CDirect
n (Pn) = log2(1 + γnPn) . (4)

2) Cooperative decode and forward: Each node n is given
the option to send all its data to a relay node, which will
then forward it to the sink, in a two time-slot protocol.
Let us assume that the channel between node n and
node m, which will act as a relay, is an AWGN channel
with complex gain hnm and noise variance σ2

mn, and
define also γnm = |hnm|2/σ2

nm. Then, the capacity of
this protocol, taking also into account optimal power
allocation between the nodes n and m, is given by [3]:

CDF
n (Pn) =

1

2
log2

(
1 +

γnmγm
γnm + γm

Pn

)
. (5)

As previously explained, the node transmission performance
is tested against the performance of the best relay chosen from
the subset Sn. So, the capacity of the second option equals to

CDF
n (Pn) =

1

2
log2(1 + bnPn) , (6)

where
bn = max

mεSn

{
γnmγm
γnm + γm

}
. (7)

Thus, according to the previous, the required functions fn(Rn)
in this case are given by

fn(Rn) = min

{
2Rn − 1

γn
,
4 · 2Rn − 1

bn

}
, (8)

and according to the values of γn and bn we have the following
two cases:
(a) When bn ≤ 4γn, we have that

fn(Rn) =
2Rn − 1

γn
(9)

(b) When bn > 4γn (which also implies that bn > γn), we
have that

fn(Rn) =


2Rn−1
γn

, Rn ≤ log2

(
bn−γn
bn−4γn

)
4·2Rn−1

bn
, Rn > log2

(
bn−γn
bn−4γn

) (10)

Thus, from the above, we can see that energy savings,
relative to the scheme in [5], are possible when bn > 4γn
and Rn > log2

(
bn−γn
bn−4γn

)
. Fig. 7 depicts a plot of fn(Rn) for

γn = 1 and bn = 5, thus, since bn > 4γn Eq. (10) is used.
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TABLE I
COMPARISON OF SUM POWERS.

Number of deeply faded channels
1 2 3

Non-DSC 2571.40 3751.60 5092.90
Sequential 175.73 245.15 324.05
Proposed 129.02 152.76 179.81

1) Numerical Results: In order to illustrate the gains
achieved by applying a DSC approach as well as the proposed
extension, let us consider a bridge scenario in which 10 sensors
are equidistantly placed along the deck, similarly as in Fig. 1.
The joint entropy model for any two sources, also used in [4],
is a function of the individual entropy (which equals 8 for all
nodes), of a correlation coefficient c = 0.1, and the distances
dij between the sources i.e.,

H(Xi, Xj) = H(Xi) + (1− 1/(1 + dij/c))H(Xi).

The distance between consecutive sensors is 0.1 and their
distance to the sink is in the range from 0.5 to 1.0296. The
channel gains are in general assumed equal to the inverse
square distance. However, in some cases node-to-sink channels
are further faded due to e.g. obstacles. Let us take as deeply
faded channels those with bn/γn=10. The total sum powers
for non-DSC approach, sequential DSC and the proposed
technique are presented in Table I. Under the assumption that
some nodes experience deeply faded channels comparing to
their neighbors, the proposed strategy results in a decreased
power consumption by the network as a whole. Under the same
assumption, the peak power constraint is lowered as well.

IV. IMPLEMENTATION-RELATED ISSUES

In our system model, we made several assumptions, such as
independence of the channels and full knowledge of network
topology, correlation model and the channel gains. There
are several practical ways which can assure that the above
assumptions come true. Let us outline some of the main ones:

1) Independent channels can be achieved by using multiple
access techniques appropriate for WSNs.

2) All the involved channels may be estimated during a
training period in which all nodes take part.

3) The sink could estimate the pairwise correlation model
and corresponding joint entropies from the system model

created during the design phase of a construction. Oth-
erwise, it could be obtained after receiving the real
measurements sent by the nodes at the rates of individual
entropies (without applying DSC) during the training
period.

4) In case that some node fails, the sink would need to
establish new relations among the nodes only in the
neighborhood of this node, without changing the whole
sequential scheme.

Throughout this paper, we consider only spatial correlation.
However, temporal correlation can be utilized as well. De-
veloping a strategy which exploits efficiently both types of
correlation is of current investigation.

V. CONCLUSION

We studied the sensor reachback problem in wireless sensor
network (WSN), where distributed source coding (DSC) is
used in order to compress the data. This approach is efficient
when there is spatial correlation between the sensor nodes,
as in Structural Health Monitoring (SHM) application. The
channel-aware extension of sequential decoding, based on
cooperation between the nodes, has been proposed to minimize
the total sum power.
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