
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2006, Article ID 25686, Pages 1–12
DOI 10.1155/WCN/2006/25686

Low Complexity Turbo Equalization for High Data Rate
Wireless Communications

Dimitris Ampeliotis and Kostas Berberidis

Computer Engineering and Informatics Department and CTI/R&D, University of Patras, 26500 Rio-Patras, Greece

Received 21 December 2005; Revised 3 July 2006; Accepted 21 July 2006

Recommended for Publication by Huaiyu Dai

Soft interference cancellers (SICs) have been proposed in the literature as a means for reducing the computational complexity of
the so-called turbo equalization receiver architecture. Soft-input-soft output (SISO) equalization algorithms based on linear filters
have a tremendous complexity advantage over trellis-diagram-based SISO equalizers, especially for high-order modulations and
long-delay spread frequency selective channels. In this paper, we modify the way in which the SIC incorporates soft information.
In existing literature the input to the cancellation filter is the expectation of the symbols based solely on the apriori probabilities
coming from the decoder, whereas here we propose to use the conditional expectation of those symbols, given both the apriori
probabilities and the received sequence. This modification results in performance gains at the expense of increased computational
complexity, as compared to previous SIC-based schemes. However, by introducing an approximation to the aforementioned algo-
rithm a linear complexity SISO equalizer can be derived. Simulation results for an 8-PSK constellation and hostile radio channels
have shown the effectiveness of the proposed algorithms in mitigating the intersymbol interference (ISI).

Copyright © 2006 D. Ampeliotis and K. Berberidis. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

Turbo equalization [1] was motivated by the breakthrough
of turbo codes [2] and has emerged as a promising technique
for drastic reduction of the intersymbol interference in fre-
quency selective wireless channels. Unfortunately, the trellis-
diagram-based turbo equalizer of [1] can be a heavy com-
putational burden to wireless systems with limited process-
ing power, especially in cases the wireless channel has long-
delay spread. Thus, a number of alternative, low complexity,
equalization methods that can be properly incorporated in
the generic turbo equalization scheme have been proposed,
offering good complexity/performance trade-offs.

In this context, it was proposed in [3] to replace the
trellis-diagram-based equalizer by an adaptive SIC of linear
complexity. In [4], an improved extension of the algorithm
of [3] was presented. In [5], an MMSE SIC for the receiver
of a coded CDMA system was suggested. In [6] an MMSE-
optimal equalizer based on linear filters was derived and it
was proven that several other algorithms (such as the one
in [3]) could be viewed as approximations of this one. In
[7], the MMSE-optimal equalizer of [6] was used as a start-
ing point for the derivation of two approximate equalizers.

In particular, the so-called APPLE equalizer was derived in
the case of “weak” a priori information, and the “matched
filtering” equalizer in the case of “strong” a priori infor-
mation. Moreover, a decision criterion was used for select-
ing among the aforementioned equalizers, leading to the so-
called SWITCHED approach. In [8], a modified version of
the sliding window algorithm of [6] was derived having simi-
lar performance with the original one while offering reduced
computational complexity via the use of a Cholesky factor-
ization technique. In [9], the authors modified the algorithm
of [6] which involves complex valued matrices into an algo-
rithm that uses augmented real valued matrices yielding bet-
ter performance at approximately the same complexity. More
recently, the authors of [10] derived the theoretical (time in-
variant) transfer function of an MMSE optimal equalizer and
showed that this equalizer reduces to a linear equalizer in the
case of no a priori information or to an MMSE SIC in the case
of perfect a priori information. Their algorithm was shown
to be identical to a low complexity algorithm derived in [11]
in the case where the equalizer filters are restricted to finite
length. In [12], the incorporation of channel output infor-
mation in the computation of the input to the cancellation
filter of the SIC was investigated.
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Figure 1: The model of transmission.

In the proposed turbo equalizer, we split the problem
of a priori probabilities-based equalization into two distinct
MMSE optimization problems. The first problem consists
in the estimation of past and future symbols using a priori
probabilities and channel output information, while the sec-
ond problem is the estimation of the current symbol based
on past and future symbols. The solution to the first prob-
lem is to use an MMSE equalizer similar to the one devel-
oped in [11], but modified appropriately so as to provide all
the required symbols instead of computing only the current
symbol estimate. For the second problem we suggest using
an MMSE SIC which has been designed under the assump-
tion that its input symbols are actually correct symbols (in
practice they are provided by the aforementioned equalizer).
As shown experimentally, the proposed approach, so-called
conditional expectation-soft interference canceller (CE-SIC),
exhibits similar performance to the exact MMSE solution of
[11], at a similar computational cost. Although the exact im-
plementation of the CE-SIC does not enjoy any advantage
over the exact equalizer of [11], it leads to the derivation of
an approximate version, so-called approximate conditional
expectation-soft interference canceller (ACE-SIC), which has
linear complexity. Simulation results have shown that the
proposed algorithm exhibits very good performance charac-
teristics that make it suitable for high data rate wireless com-
munications.

The rest of this paper is organized as follows: in Section 2,
the communication system model is formulated. In Section
3, the CE-SIC algorithm is derived. Then, an approximation
to the exact algorithm is introduced and the ACE-SIC al-
gorithm is formulated in Section 4. In Section 5, for com-
parison reasons, various SISO equalizers that are suitable for
turbo equalization are categorized according to their compu-
tational complexity. Finally, in Section 6, simulation results
verifying the performance of the proposed equalizers are pro-
vided and the work is concluded in Section 7.

2. SYSTEM MODEL

Let us consider the communication system depicted on
Figure 1. A discrete memoryless source generates binary data
bi, i = 1, . . . , S. These data, in blocks of length S, enter a
convolutional encoder of rate R, so that new blocks of S/R
bits (cj , j = 1, . . . , S/R) are created, where S/R is assumed
integer and no trellis termination is assumed. The output
of the convolutional encoder is then permuted by an inter-

leaver, denoted as Π, so as to form the corresponding block of
bits cm, m = 1, . . . , S/R. The output of the interleaver is then
grouped into groups of q bits each (with S/Rq also assumed
integer) and each group is mapped into a 2q-ary symbol from
the alphabet A = {α1,α2, . . . ,α2q}. The resulting symbols xn,
n = 1, . . . , S/Rq, are finally transmitted through the channel.

We assume that the communication channel is frequency
selective and constant during the packet transmission, so that
the output of the channel (and input to the receiver) can be
modeled as

zn =
L2∑

i=−L1

hixn−i + wn, (1)

where L1, L2 + 1 denote the lengths of the anticausal
and causal parts, respectively, of the channel impulse re-
sponse. The output of the multipath channel is corrupted by
complex-valued additive white Gaussian noise (AWGN) wn.

At the receiver, we employ an equalizer to compute soft
estimates of the transmitted symbols. As a part of the equal-
izer is also a scheme that transforms the soft estimates of
the symbols into soft estimates of the bits that correspond
to those symbols. The output of the equalizer is the log-

likelihood L(E)
e (cm), m = 1, . . . , S/R, where the subscript

stands for “extrinsic” and the superscript denotes that this
log-likelihood ratio comes from the equalizer. The operator
L(·) applied to a binary random variable y is defined as

L(y) = ln
(

Pr(y = 1)
Pr(y = 0)

)
. (2)

In the sequel, the log-likelihood ratios L(E)
e (cm) are de-

interleaved and enter a soft convolutional decoder, imple-
mented here as a MAP decoder. We stretch the fact that the
convolutional decoder operates on the code bits cj of the
code and not on the information bits bi. The log-likelihood
ratios L(D)(cj) at the output of the decoder are first inter-
leaved and then enter the SISO equalizer as a priori probabil-
ities information. These a priori probabilities are combined
with the output of the channel via a SISO equalization algo-
rithm which computes new soft estimates about the trans-
mitted bits. Thus, the above mentioned procedure can be it-
erated a number of times. The authors of [13] have proposed
three stoping criteria that can be used to terminate the itera-
tive procedure when no further performance improvement is
possible, thus reducing the computational complexity of the
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Figure 2: The proposed CE-SIC equalizer.

receiver. These stoping criteria consist in (a) using the cross
entropy, (b) monitoring the hard decisions at the output of
the decoder (whether they remain the same as in the previous
iteration), and (c) evaluating a risk function that measures
the reliability of the decisions at the output of the decoder.
In any case, at the last iteration, the decoder operates on the

information bits bi and provides the hard estimates b̂i. Al-
though in our experiments we have used a fixed number of
iterations, the above-mentioned stoping criteria could apply
to our method as well.

It is interesting to note that, as it was also the case in
[10, 14, 15], we observed that if the output of the MAP de-
coder is extrinsic then nonnegligible performance degrada-
tion occurs for high-order modulations. Thus, in this work
we use the entire a posteriori probability information at the
output of the decoder as input to the equalizer.

3. THE CONDITIONAL EXPECTATION SIC (CE-SIC)

The CE-SIC shown in Figure 2 is a device consisting of three
distinct units, namely, an MMSE soft interference canceller, a
conditional expectation computation unit that delivers sym-
bol estimates to the cancellation filter of the SIC, and a
Demapper. The conditional expectation computation unit
provides estimates of the transmitted symbols given the a pri-
ori information coming from the decoder and the output of
the channel. Based on these estimates the SIC forms an es-
timate sn of the current symbol. Finally, the Demapper ex-
ploits the output of the SIC and the a priori bit probabilities
to compute the corresponding a posteriori bit probabilities.
In the following, we describe in detail each of these units.

3.1. MMSE soft interference cancellation

The SIC [3, 6] consists of two filters, that is, the matched filter

p = [p−k · · · p0 · · · pl
]T

, M = k + l + 1 (3)

and the cancellation filter

q = [q−K · · · q−1 0 q1 · · · qN]T . (4)

The input to the filter p is the sampled output of the channel
at the symbol rate, whereas the input to the cancellation filter
consists of past and future symbols. The output sn of the SIC
is the sum of the outputs of the two filters, that is,

sn = pHzn + qH x̃n, (5)

where zn = [zn+k · · · zn · · · zn−l]T and x̃n = [x̃n+K · · · x̃n · · ·
x̃n−N ]T . Minimizing the mean squared error E[|sn−xn|2] and
assuming that the cancellation filter contains correct sym-
bols, then the involved filters are given by the equations (see
the appendix):

p = 1
σ2
w + Eh

Hd,

q = −HHp + ddTHHp,

(6)

where N = l+L2, K = L1 + k, Eh = dTHHHd is the energy of
the channel and H is the M×(K+N+1) channel convolution
matrix. H and d are defined as

H =

⎡⎢⎢⎢⎢⎢⎣
h−L1 · · · hL2 0 · · · 0

0
. . . hL2−1 hL2 · · · 0

...
. . .

. . .
. . .

. . .
...

0 · · · 0 h−L1 · · · hL2

⎤⎥⎥⎥⎥⎥⎦ ,

d = [01×K 1 01×N
]T

,

(7)

respectively. From the above equations it is clear that the out-
put sn of the canceller does not depend on the symbol esti-
mate x̃n since the central tap (q0) of the cancellation filter
has been set to zero. At this point, it is convenient to define a
function T (v,L,C) which transforms the row vector v into a
L× C Toeplitz matrix as

T
([
v1v2 · · · vd

]
,L,C

)

=

⎡⎢⎢⎢⎢⎢⎣
v1 · · · vd 0 · · · 0

0
. . . vd−1 vd · · · 0

...
. . .

. . .
. . .

. . .
...

0 · · · 0 v1 · · · vd

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

C columns

L rows . (8)

Thus, according to (8), the convolution matrix H can be writ-
ten as

H = T
(

hT ,M,K + N + 1
)
, (9)

where h = [h−L1 · · ·h0 · · ·hL2 ]T .

3.2. Conditional expectation computation

Let us first see how the mean and variance of the trans-
mitted symbols may be computed based solely on a priori
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probabilities. If we define the function that maps the bits into
symbols as

αi =A
(
βi,1,βi,2, . . . ,βi,q

)
, (10)

where βi, j ∈ {0, 1} and αi ∈ A, then the transmitted symbols
are given by

xn=A
(
c(n−1)·q+1, c(n−1)·q+2, . . . , c(n−1)·q+q

)
, n=1, . . . ,

S

Rq
,

(11)

where c(n−1)·q+ j correspond to the output bits of the inter-
leaver. Based on the assumption that these bits are mutually
independent, we have

Pr
{
xn = αi

} = q∏
j=1

Pr
{
c(n−1)·q+ j = βi, j

}
, (12)

where the latter probabilities come from the decoder after
converting the log-likelihood ratios to bit probabilities. Based
on the above symbol probabilities we have

xn = E
[
xn
] = 2q∑

i=1

αi Pr
{
xn = αi

}
,

σ2
xn = E

[∣∣xn∣∣2]− E
[
xn
]
E
[
x∗n
] = 1− ∣∣xn∣∣2

(13)

assuming unit average symbol power E[|xn|2]. The symbol∗
denotes the complex conjugate operation. It should be made
clear at this point that the operator E[·] is computed taking
into account the a priori probabilities Pr{xn = αi} at the out-
put of the channel decoder. Thus, xn is conditioned on the
output of the decoder.

The conditional expectation computation unit sets the
input to the cancellation filter of the SIC equal to

x̃n = E
[

xn | z′n
]

(14)

instead of xn = E[xn] as proposed in [3], which is only con-
ditioned on the a priori probabilities at the output of the de-
coder. Vector z′n is defined as

z′n =
[
zn+k+K · · · zn · · · zn−l−N

]T
(15)

and its length is selected so that all elements of x̃n use infor-
mation from a window of at least M = k + l + 1 samples of
the sequence zn. We may express vector z′n in matrix form as

z′n = H′x′n + w′
n, (16)

where x′n = [xn+2K · · · xn · · · xn−2N ]T , vector w′
n contains

the corresponding noise samples, and H′ is the (M′ = K +
M+N)× (2(K +N) + 1) channel convolution matrix defined
similarly to matrix H. Thus, [16, Theorem 10.3] concerning
the Bayesian general linear model may be applied assuming
that the symbols x′n have a prior p.d.f N (x′n, Cx′n), where

Cx′n = diag
([
σ2
xn+2K

· · · σ2
xn · · · σ2

xn−2N

])
(17)

is the diagonal covariance matrix of the symbols based solely
on a priori probabilities, and x′n = E[x′n]. Thus,

x̃′n = E
[

x′n | z′n
]

= x′n + Cx′nH′H(H′Cx′nH′H + Cw′
)−1(

z′n −H′x′n
)
,

(18)

where Cw′ = σ2
wIM′ is the covariance matrix of the noise vec-

tor w′. Finally, the required vector x̃n is extracted from x̃′n by
simply keeping only the K +N + 1 required elements. At this
point, it is interesting to mention that (18) is simply a “block”
version of the linear MMSE equalizer proposed in [11], in the
sense that instead of computing only one symbol estimate, it
estimates a vector of symbols.

Now let us impose the extrinsic-information constraint
on x̃′n which implies that this quantity should not depend on
the a priori probabilities about symbol xn. This modification
yields

E(e)[x′n] = x′n −D′x′n,

C(e)
x′n = Cx′n +

(
1− σ2

xn

)
D′,

(19)

where D′ = d′d′T , d′ = [01×2K 1 01×2N ]T , and the super-

script (e) stands for “extrinsic”. If we define matrix F′(e)
n =

H′H(H′C(e)
x′n H′H + σ2

wI)−1, and substitute into (18), we get

x̃′(e)
n = E(e)[x′n] + C(e)

x′n F′(e)
n

(
z′n −H′E(e)[x′n])

= x′n −D′x′n +
(

Cx′n +
(
1− σ2

xn

)
D′)

× F′(e)
n

(
z′n −H′x′n + xnH′d′

)
.

(20)

Now, keeping only the elements of x̃′(e)
n that are needed to

feed the cancellation filter of the SIC, we have

x̃(e)
n =xn−Dxn+

(
Cxn +

(
1− σ2

xn

)
D
)

F(e)
n

(
z′n −H′x′n + xnH′d′

)
,

(21)

where

F(e)
n = C

(
F′(e)
n ,K + 1, 2K + 1 + N

)
(22)

denotes a matrix consisting of the “central” K + 1 + N rows

of F′(e)
n (from row K + 1 to 2K + 1 + N) and D = ddT . Sub-

stituting the above relation into (5), and taking into account
that qHd = 0, we finally get

sn = pHzn + qH x̃(e)
n

= pHzn + qHxn + qHCxnF(e)
n

(
z′n −H′x′n + xnH′d′

)
.

(23)

From the above relation it is interesting to note that the sug-
gested solution is, in fact, a soft interference canceller (con-
sisting of the first two terms of (23)) plus a “correction” term
to compensate for the fact that the cancellation filter of the
SIC does not contain the correct symbols. Furthermore, for
perfect a priori information (σ2

xn → 0), the third term of
(23) vanishes and, in this case, the CE-SIC equalizer becomes
equivalent to the exact linear MMSE equalizer of [11]. On
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Input: h, L1, L2, σ2
w , L(D)(cm), zn, k, l n = 1, . . . , S/(Rq), m = 1, . . . , S/R

Output: L(E)
e (cm) m = 1, . . . , S/R

Compute xn and σ2
xn from (13) n = 1, . . . , S/(Rq)

M = k + l + 1, N = l + L2, K = L1 + k, M′ = K + M + N
H′ = T {hT ,M′, 2(K + N) + 1}, d′ = [01×2K 1 01×2N ]T , D′ = d′d′T

H = T {hT ,M,K + N + 1}, d = [01×K 1 01×N ]T , D = ddT

p = 1
σ2
w + Eh

Hd (Eh = dTHHHd)

q = −HHp + DHHp
FOR n = 1, . . . , S/(Rq)

Cx′n = diag([σ2
xn+2K

· · · σ2
xn · · · σ2

xn−2N
])

C(e)
x′n = Cx′n + (1− σ2

xn )D′

F′(e)
n = H′H(H′C(e)

x′n H′H + σ2
wI)−1

F(e)
n = C(F′(e)

n ,K + 1, 2K + 1 + N)
zn = [zn+k · · · zn · · · zn−l]T , z′n = [zn+k+K · · · zn · · · zn−l−N ]T

xn = [xn+K · · · xn · · · xn−N ]T , x′n = [xn+2K · · · xn · · · xn−2N ]T

sn = pHzn + qHxn + qHCxnF(e)
n (z′n −H′x′n + xnH′d′)

Compute μi,n and σ2
i,n from (24)

FOR j = 1, . . . , q
Compute L(E)

e (c(n−1)q+ j) from (26)
END

END

Algorithm 1: The CE-SIC equalizer.

the other hand, when a priori information is null, the lin-
ear MMSE equalizer of [11] reduces to a conventional linear
equalizer and the CE-SIC reduces to an MMSE SIC whose
cancellation filter is fed by the output of a conventional lin-
ear equalizer.

In order to transform the output of the CE-SIC into log-
likelihood ratios, the mean and variance of sn, given that a
particular symbol αi has been transmitted, must be com-
puted. For these statistics, we get

μi,n = E
[
sn | xn = αi

] = (pHHd + qHCxnF(e)
n H′d′

) · αi,
σ2
i,n = pH

[
H
(

Cxn − σ2
xnD

)
HH + σ2

wIM
]

p

+ 2 Real
{

pH
[

H
(

Cxn,x′n − σ2
xndd′T

)
H′H

+ W
]

F(e)H
n CH

xnq
}

+ qHCxnF(e)
n

[
H′(Cx′n − σ2

xnD′)H′H

+ σ2
wIM′

]
F(e)H
n CH

xnq,
(24)

where

W = [0M×K σ2
wIM 0M×N

]
(25)

and Cxn,x′n is the covariance matrix between xn and x′n.
The computational complexity of this algorithm is

O(M′3) since the most demanding operation is the matrix

inversion involved in the computation of matrix F′(e)
n . A

time recursive algorithm similar to the one developed in [6]
can reduce this to O(M′2) by exploiting structural similari-
ties between subsequent matrices. Moreover, in Section 4 the

CE-SIC algorithm is used as a starting point to derive an
O(M) complexity algorithm.

3.3. Demapper

The required soft information for the output bits of the SIC,
is computed as

L(E)
e

(
cm
) = L(E)

e

(
c(n−1)·q+ j

) = ln

(
Pr
{
c(n−1)·q+ j = 1 | sn

}
Pr
{
c(n−1)·q+ j = 0 | sn

})

= ln

(∑
βi, j=1 Pr

{
xn = ai | sn

}∑
βi, j=0 Pr

{
xn = ai | sn

})

= ln

(∑
βi, j=1 Pr

{
xn = ai

}
p
(
sn | xn = ai

)/
p
(
sn
)∑

βi, j=0 Pr
{
xn = ai

}
p
(
sn | xn = ai

)/
p
(
sn
)),

(26)

where the term p(sn) can be eliminated from nominator and
denominator. Note that when computing Pr{xn = ai} in the
nominator and denominator we must set the probability of
bit j equal to unity. Also, p(sn | xn = ai) = N (μi,n, σ2

i,n)|sn ,
with μi,n and σ2

i,n given from (24). The CE-SIC equalizer, as
described in this section, is summarized in Algorithm 1.

4. APPROXIMATE IMPLEMENTATION

Although the CE-SIC developed in the previous section is
less computationally demanding than the MAP equalization
algorithm, it is still difficult to be implemented in a real-time
system. Thus in this section we develop an approximate im-
plementation of the CE-SIC equalizer, the so-called ACE-
SIC, by modifying the unit that computes the conditional



6 EURASIP Journal on Wireless Communications and Networking

expectation of the transmitted symbols. Our design goal is
to find an approximation that is well suited for low a priori
information. The soft interference canceller that combines
symbol estimates is left unchanged. The overall approximate
equalizer will thus consist of a device optimized for low a pri-
ori information, and the SIC which is optimal for perfect a
priori probabilities. Because these units cooperate, we expect
that the overall scheme will have good performance for quite
general a priori information.

In order to reduce complexity, we approximate matrix

F′(e)
n = H′H(H′C(e)

x′n H′H + σ2
wI
)−1

(27)

by the matrix

F̂′(e) = H′H(H′H′H + σ2
wI
)−1

(28)

assuming that C(e)
x′n → I2K+1+2N , which is true when no a pri-

ori information is available. It should be noted that such an
approximation has also been used in [7]. Furthermore, if we
inspect the rows of matrix F̂′(e), we can easily verify that each
one corresponds to an MMSE linear equalizer designed for a
corresponding output delay. In the previous section, we used

only the K +N + 1 “central” rows of matrix F′(e)
n . These rows

correspond to linear equalizers estimating the symbols fed to
the cancellation filter of the SIC. Each of these equalizer fil-
ters is designed to process a window of at least l past samples
and k future samples of {z}, relatively to the corresponding
output symbol. If the equalizer length M = k + l + 1 is suffi-
ciently long, then any further increase of its length does not
affect the existing taps while all new taps are equal to zero. In
this case, the associated matrix F̂ is given by

F̂ = T
{

dTHH
(

HHH + σ2
wIM

)−1
, K + 1 + N ,K + M + N

}
,

(29)

where the function T (v,L,C) was defined earlier. Matrix F̂
is an approximation of matrix F(e)

n , where the last matrix is
defined by (22). This approximation is valid when the linear
equalizer filter length is adequately large, so that two linear
equalizers of equal lengthK+M+N > M, designed to provide
estimates of symbols xn and xn−i, respectively, have equal taps
but shifted by i places.

The above-suggested approximation of matrix F(e)
n by F̂ is

expected to affect the performance of the ACE-SIC algorithm
compared to the performance of its exact counterpart, the
CE-SIC. In particular, the third term of (23) becomes subop-
timal and thus, the past and future symbol estimates in the
cancellation filter are not equal to their MMSE estimates. As a
remedy to this performance degradation, we allow the (past
and future) symbol estimates contained in the cancellation
filter to depend on the a priori information about the current
symbol xn. Using the a priori information about xn improves
the computed past and future symbol estimates. On the other
hand, as these estimates are subsequently combined for the
computation of the output of the ACE-SIC, it turns out that
the extrinsic information restriction has been relaxed. How-
ever, the output of the ACE-SIC depends only implicitly on
the a priori information about xn via the past and future esti-
mates that use this information. This modification yields the

following filtering equation:

ŝn = pHzn + qHxn + qHCxn F̂
(

z′n −H′x′n
)

(30)

in which the vector multiplying F̂ does not include the term
xnH′d′, as opposed to (23). Simulation results verified that
this modification leads to noticeable performance improve-
ment.

Similarly to the CE-SIC, in order to transform the out-
put of the algorithm into log-likelihood ratios the mean and
variance of the output ŝn must be estimated. For complexity
reasons we assume that the required mean and variance re-
main fixed during each iteration, that is, they are computed
once prior to each iteration. This can be achieved by keeping
all symbol variances equal to σ2 assuming all symbols to be
equally reliable. It is interesting to note that a similar approx-
imation has also been used in [7]. By using relations (24),
which comply with the extrinsic information restriction, we
get

μ̂i =
(

pHHd + σ2qH F̂H′d′
) · αi,

σ̂2
i = pH

[
H
(
σ2IK+1+N − σ2D

)
HH + σ2

wIM
]

p

+ 2σ2 Real
{

pH
[

H
(

Ĉx,x′ − σ2dd′T
)

H′H + W
]

F̂Hq
}

+ σ4qH F̂
[

H′(σ2I2K+1+2N − σ2D′)H′H + σ2
wIM′

]
F̂Hq,

(31)

where

Ĉx,x′ =
[

0K+N+1×K σ2IK+N+1 0K+N+1×N
]
. (32)

Concerning now the required parameter σ2, in contrast to [7]
where a time average over all σ2

xn was used, here we suggest
using

σ2 = max
{
σ2
x1

, σ2
x2

, . . . , σ2
xS/(Rq)

}
. (33)

This approximation is valid whenever all symbol variances
are equal. We use the maximum symbol variance (i.e., the
variance of the least reliable symbol), in place of the time av-
erage previously proposed, in order to assure that none of the
symbols is treated as more reliable than it actually is, during
the demapping operation.

At this point it is interesting to note that the ACE-SIC
equalizer has a very attractive feature compared to other ap-
proaches. Apart from the Toeplitz-matrix approximation of
(29), the ACE-SIC is identical to its exact counterpart (CE-
SIC) both for perfect a priori information (i.e., σ2

xn → 0)
and for no a priori information (i.e., σ2

xn → 1). Note that
similar approximations in [6] resulted in equalizers satisfy-
ing only one of these two conditions, leading the authors to
propose suitable decision criteria for selecting one out of two
approximate algorithms (one designed for σ2

xn → 0, and the
other for σ2

xn → 1) prior to each iteration [6, 7]. The per-
formance of the ACE-SIC demonstrated in Section 6 jus-
tifies to some extend the approximations suggested above.
Algorithm 2 summarizes the ACE-SIC equalizer.
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Input: h, L1, L2, σ2
w , L(D)(cm), zn, k, l n = 1, . . . , S/(Rq), m = 1, . . . , S/R

Output: L(E)
e (cm) m = 1, . . . , S/R

Compute xn and σ2
xn from (13) n = 1, . . . , S/(Rq)

M = k + l + 1, N = l + L2, K = L1 + k
For the first Iteration

H = T {hT ,M,K + N + 1}, d = [01×K 1 01×N ]T , D = ddT

f = (HHH + σ2
wIM)−1Hd

p = 1
σ2
w + Eh

Hd (Eh = dTHHHd)

q = −HHp + DHHp
Compute and store all terms of (31) using σ2 = 1

FOR n = 1, . . . , S/(Rq)
zn = [zn+k · · · zn · · · zn−l]T
xn = [xn+K · · · xn · · · xn−N ]T

x̃n = xn + σ2
xn fH(zn −Hxn)

END
σ2 = max{σ2

x1
, σ2

x2
, . . . , σ2

xS/(Rq)
}

Compute μ̂i and σ̂2
i from (31) using the stored terms

FOR n = 1, . . . , S/(Rq)
zn = [zn+k · · · zn · · · zn−l]T
x̃n = [x̃n+K · · · x̃n · · · x̃n−N ]T

ŝn = pHzn + qH x̃n

FOR j = 1, . . . , q
Compute L(E)

e (c(n−1)q+ j) from (26) using μ̂i and σ̂2
i

END
END

Algorithm 2: The ACE-SIC equalizer.

For the sake of simplicity, the algorithm demonstrated
in Algorithm 2 appears to have two distinct filtering loops.
The first one computes the input to the cancellation filter of
the SIC while the second loop uses these estimates to cancel
the interference. It should be noted however that these two
loops could be combined to one: after the initialization phase
where the first loop computes K estimates x̃1, . . . , x̃K (of fu-
ture symbols needed for cancellation of the interference), the
two loops can run simultaneously, that is, at each time in-
stant n an estimate of x̃n+K is first computed and then used
for cancellation. This remark could be useful in applications
with output delay restrictions.

5. COMPLEXITY ISSUES

Over the past decade, after turbo equalization was first pro-
posed in [1], several attempts have been made towards re-
ducing the computational complexity of the equalization al-
gorithm involved in such a receiver architecture. As we have
already mentioned, equalizers based on linear filters offer
considerable complexity reduction as compared to equalizers
based on trellis-diagrams. The various SISO equalizers that
are based on linear filters can be classified into the following
three categories in terms of their computational complexity.

(1) Time-varying-filter algorithms. This category includes
algorithms whose filters are being updated each time
a new output symbol is computed. Usually, a matrix

inversion has to be computed, requiring a complex-
ity order of O(M3) which can be reduced to O(M2) by
using a time-recursive algorithm which exploits struc-
tural similarities between subsequent matrices. Typi-
cal examples of algorithms falling into this category are
the MMSE exact algorithm of [11], the CE-SIC devel-
oped here and the algorithms presented in [8, 9].

(2) Reoptimized prior every iteration. This category in-
cludes algorithms whose filters are being updated prior
to each iteration, but are kept fixed during the subse-
quent processing of the current data burst. This op-
timization involves only one matrix inversion before
each iteration, and the required complexity is of order
O(M2) when the involved channel convolution ma-
trix has a Toeplitz structure. Typical examples of such
algorithms are the approximate MMSE LE (I) devel-
oped in [11] and the equivalent IC LE developed in
[10]. In the latter approach the complexity is reduced
to O(M log2(M)) by approximating a Toeplitz matrix
by a circulant matrix.

(3) Optimized only once. This category includes algorithms
whose filters are optimized only at the first iteration,
and turn out to be equal to the conventional MMSE
equalizers, operating without using a priori proba-
bilities. Examples of algorithms of this category are
the APPLE, Matched Filtering (Soft Interference Can-
celler) and SWITCHED equalizers of [7] and the ACE-
SIC developed here.
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Table 1: Complexity order comparison of various SISO equalizers for the initialization phase (e.g., prior to filtering).

Filter Computation Statistics Computation

Approach First Iteration Next Iterations First Iteration Next Iterations

CE-SIC O
(
M′2) O

(
M′3)† O

(
M′2) —

MMSE LE [11] O
(
M2
)

O
(
M3
)†

O(M) —

IC-LE [10] O
(
M log2(M)

)
O
(
M log2(M)

)
O
(
M2
)

O
(
M2
)

MMSE-LE (I) [11] O
(
M2
)

O
(
M2
)

O
(
M2
)

O
(
M2
)

SWITCHED [7] O
(
M2
)

— O
(
M2
)

O(1)

ACE-SIC O
(
M2
)

— O
(
M2
)

O(1)

†We assume no “bootstrap” procedure as described in [11].

Equalizers of the third category, beyond their significant
complexity savings, can be easily modified to derive adap-
tive counterparts that still have linear complexity. Since the
filters of those equalizers are set equal to their conventional
MMSE counterparts (computed without using a priori prob-
abilities), a decision directed approach utilizing tentative de-
cisions can be used in the update recursion. For example, in
[3] the LMS algorithm was used to update the filters of a can-
celler whose initial estimates where obtained using a training
sequence. Table 1 summarizes the complexity orders for the
initialization phase of various SISO equalizers. It should be
stressed that comparison of complexities is meaningful if the
systems under comparison perform the same number of it-
erations.

6. SIMULATION RESULTS

To test the performance of the proposed equalizers we per-
formed some typical experiments. Information bits were
generated in bursts of S = 6144 bits. Then an R.S.C. code
with generator matrix G(D) = [1((1 + D2)/(1 + D + D2))]
of rate R = 1/2 was applied, and the resulting bits were in-
terleaved using a S-random interleaver (S = 23) [17]. The
interleaved bits were mapped to an 8-PSK (q = 3) sym-
bol alphabet using Gray code mapping. The 4096 symbols
per burst were transmitted over a channel whose impulse re-
sponse was set either h−1 = 0.407, h0 = 0.815, h1 = 0.407
(channel B of [18]) or h−2 = 0.227, h−1 = 0.46, h0 = 0.688,
h1 = 0.46, h2 = 0.227 (channel C of [18]). Figures 3 and 4
demonstrate the performance of various receivers perform-
ing turbo equalization for the aforementioned channels. The
cases shown correspond to (a) conventional equalization and
decoding executed once, and (b), (c), and (d) to 1, 2, and
8 turbo iterations, respectively. For all simulations, the filter
lengths were computed using k = l = 10. The SNR of the
system used in the simulations is defined as

Eb
N0

= Es
q · R ·N0

, (34)

where Es denotes the average energy per transmitted symbol
and N0 = σ2

w.
From Figure 3, we notice that all equalizers exhibit sim-

ilar performance. The MMSE equalizer of [6] has supe-

rior performance followed by the CE-SIC, the SWITCHED
equalizer of [7] and the ACE-SIC. The performance of all
algorithms is almost the same after eight iterations, and all
algorithms have reached the performance bound that corre-
sponds to the AWGN channel. Using a high complexity al-
gorithm for the channel B does not seem very practical since
the same performance can be obtained by the low complexity
solutions.

On Figure 4, we notice that the ISI caused by the chan-
nel is quite severe so that none of the examined algo-
rithms reaches the performance bound after eight itera-
tions. The MMSE equalizer of [6], and the CE-SIC have al-
most the same performance. The MMSE I equalizer, pro-
posed in [11] as a low cost alternative to the exact algo-
rithm, offers better performance than the ACE-SIC equal-
izer but at a higher computational complexity, since its fil-
ters are reoptimized before every turbo iteration. It is in-
teresting to note that the ACE-SIC equalizer exhibits bet-
ter performance than the SWITCHED equalizer of [7] (ap-
proximately 1 dB less SNR is needed to achieve a BER of
10−3). Therefore, for hostile channels, switching between
equalizers optimized for the two extreme cases (no a pri-
ori and perfect a priori information) is a less efficient tech-
nique than using an algorithm that can smoothly adapt to the
quality of the a priori information (such as the ACE-SIC).
Also, the ACE-SIC equalizer, at medium SNRs, achieves a
performance close to the performance of its exact counter-
part.

7. CONCLUSION

In this work, a novel SISO equalizer of linear complexity
was presented. This algorithm was derived as an approxi-
mate implementation (ACE-SIC) of a new two-step mini-
mization algorithm (CE-SIC) which in turn was developed
for the problem of equalization using a priori probabilities.
Simulation results indicated that (a) the exact implementa-
tion has almost identical performance to the MMSE equal-
izer of [11], and (b) the approximate implementation offers
very good performance at linear complexity. Thus, the lat-
ter low complexity equalization algorithm is suitable for high
data-rate wireless communication systems with limited pro-
cessing power.
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Figure 3: Bit error rate performance of various iterative receivers for channel B. (a) Equalization and decoding executed once, (b) one turbo
iteration, (c) two turbo iterations, and (d) 8 turbo iterations.

APPENDIX

DERIVATION OF (6)

Let us define filter p of the soft interference canceller as in (3)
and partition filter q as

q = [q−K · · · q−1 0 q1 · · · qN
]T = [qT

( f ) 0 qT
(p)

]
.

(A.1)

Let us now define a vector θ containing the coefficients of the

above filters as θ = [pT qT
( f ) qT

(p)]
T and the vector

un=
[
zn+k · · · zn · · · zn−l xn+K · · · xn+1 xn−1 · · · xn−N

]T
(A.2)

so that the output of the canceller at time index n is given by
sn = θHun. The vector θo that minimizes the mean squared
error E[|sn − xn|2] will then satisfy

Rθo = r, (A.3)

where R = E[unuH
n ] and r = E[xnun]. We can now split ma-

trix R into 9 submatrices as follows:

R = E
[

unuH
n

] =
⎡⎢⎢⎢⎢⎣

Rzz R
( f )
zx R

(p)
zx

R
( f )
xz R

( f )
xx R

( f ,p)
xx

R
(p)
xz R

(p, f )
xx R

(p)
xx

⎤⎥⎥⎥⎥⎦ , (A.4)
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Figure 4: Bit error rate performance of various iterative receivers for channel C. (a) Equalization and decoding executed once, (b) one turbo
iteration, (c) two turbo iterations, and (d) 8 turbo iterations.

where by using the fact that the symbols xn are uncorrelated
we have that

⎡⎣ R
( f )
xx R

( f ,p)
xx

R
(p, f )
xx R

(p)
xx

⎤⎦ =
⎡⎣ IK 0K×N

0N×K IN

⎤⎦ , r =

⎡⎢⎢⎣
rxz

0K×1

0N×1

⎤⎥⎥⎦ .
(A.5)

Now, it is possible to express the statistical quantities in the
above expressions in terms of the channel impulse response.
If we define as H the M × (K + 1 + N) channel convolution
matrix, as HA the matrix consisting of the first K columns of

H, and as HB the matrix consisting of the last N columns of
H, it is easy to verify that

Rzz = HHH + σ2
wIM ,

R
( f )
zx = HA, R

( f )
xz = HH

A ,

R
(p)
zx = HB, R

(p)
xz = HH

B ,

rxz = Hd, d =
[

01×k+L1 1 01×l+L2

]T
,

(A.6)

where we have assumed N = l+L2 and K = L1 +k. Using the
above expressions, we can split the initial linear system into
three linear subsystems and express the filters of the MMSE
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canceller as

po =
(

HHH + σ2
wIM −HBHH

B −HAHH
A

)−1
Hd,

qo,( f ) = −HH
A po,

qo,(p) = −HH
B po.

(A.7)

Substituting H = [HA Hd HB] into (A.7) and using the
matrix inversion lemma, we finally get

po = 1
σ2
w + Eh

Hd. (A.8)

Finally, vector qo can be expressed more compactly as

qo =

⎡⎢⎢⎣
qo,( f )

0

qo,(p)

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−HH

A po

0

−HH
B po

⎤⎥⎥⎦ = −HHpo + ddTHHpo,

(A.9)

where the last term is used to make the central coefficient
of qo equal to zero. Equations (A.8) and (A.9) conclude the
proof.

Note at this point that the above equations are equivalent
to equation (11) of [6] after proper manipulations. To verify
this, let us first reproduce equation (11) of [6]:

x̂n = cHMF

(
zn −Hxn + xns

)
, (A.10)

where cMF is the involved matched filter and s = Hd. Then,

x̂n = cHMFzn − cHMFHxn + cHMFHdxn

= cHMF︸︷︷︸
pH
o

zn +
(− cHMFH + cHMFHddT

)︸ ︷︷ ︸
qH
o

xn. (A.11)

Therefore the involved filters are equivalent, since cMF de-
fined in [6] is equal to filter p0. Thus, it follows that for
perfect a priori information the CE-SIC equalizer becomes
equivalent to the MMSE linear equalizer of [6, 11].
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