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Sorted Order-K Voronoi Diagrams for
Model-Independent Source Localization in
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Abstract—Localization of an isotropic source using energy mea-
surements from randomly deployed sensors is considered. In par-
ticular, an optimization problem that does not require knowledge
of the underlaying energy decay model is proposed, and a condi-
tion under which the optimal solution can be computed is given.
This condition employs a new geometric construct introduced here,
called the sorted order-K Voronoi diagram. We give centralized
and distributed algorithms for source localization in this setting.
Finally, analytical results and simulations are used to verify the
performance of the developed algorithms.

Index Terms—Distributed algorithms, optimization methods,
source localization, Voronoi diagrams, wireless sensor networks.

I. INTRODUCTION

IRELESS sensor networks have recently received

great attention because they hold the potential to
change many aspects of our economy and life. Among many
applications, ranging from environmental monitoring to man-
ufacturing, source localization and tracking has been widely
viewed as a canonical problem of wireless sensor networks.
Furthermore, it constitutes an easily perceived application that
can be used as a vehicle to study more involved information
processing and organization problems [1]. On the other hand,
the design, implementation and operation of a sensor network
requires the synergy of many disciplines, including signal
processing, networking and distributed algorithms. Moreover,
sensor networks must operate using minimum resources: typical
sensor nodes are battery powered and have limited processing
ability. These constraints impose new challenges in algorithm
development, and imply that power efficient, distributed and
cooperative techniques should be employed.

Most of the source localization methods that have appeared
in the literature can be classified into two broad categories. The
algorithms of the first category utilize time difference of arrival
(TDOA) measurements, whereas the algorithms of the second
category use direction of arrival (DOA) measurements. DOA
estimates are particularly useful for locating sources emitting
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narrowband signals [2], while TDOA measurements offer the
increased capability of localizing sources emitting broadband
signals [3]. However, the methods of both categories impose two
major requirements that render them inappropriate to be used in
wireless sensor networks, i.e., (a) the analog signals at the out-
puts of the spatially distributed sensors should be sampled in a
synchronized fashion, and (b) the sampling rate should be high
enough so as to capture the features of interest. These require-
ments, in turn, imply that accurate distributed synchronization
methods should be implemented so as to keep the remote sen-
sors synchronized and that high frequency electronics as well as
increased bandwidth are needed to communicate the acquired
measurements.

Recently [4], a new approach to source localization was
proposed, that utilizes received signal strength (RSS) measure-
ments. In particular, the spatially distributed sensors measure
the power of the source signal that arrives at their location.
Then, assuming that the source is isotropic, in the sense that
it radiates uniformly in all directions, and the emitted signal
decays radially according to an energy-decay model, each
sensor is able to extract some information about its distance
to the source of interest. Finally, the required location of the
source is derived by proper fusion of the information extracted
at a number of active sensor nodes. Note that, a sensor node is
characterized as active if its measurement is greater than a pre-
determined threshold. In [4], in order to avoid the ambiguities
that arise due to the unknown transmit power of the source, it
was proposed to compute ratios of measurements taken at pairs
of active sensors. In [5], maximum likelihood multiple-source
localization based on RSS measurements was considered. In
[6], the problem of source localization was formulated as a
coverage problem and estimates of the necessary sensor density
which can guarantee a localization error bound, were derived.
In [7], a distributed “incremental subgradient” algorithm was
proposed to yield iteratively the source location estimate.
More recently, a distributed localization algorithm enjoying
good convergence properties was proposed in [8], based on
the method of projections onto convex sets (POCS). In [9], a
nonlinear cost function for localization was proposed and it
was proved that its gradient descent minimization is globally
converging. In [10], as well as in our work in [11], least squares
based localization algorithms were considered. However, all the
aforementioned approaches require knowledge of the energy
decay model and/or the transmit power of the source of interest.

In [12], the case of unavailable information about the en-
ergy decay model and the transmit power of the source (i.e.,
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model-independent case) was considered. The location of the
source was derived by properly averaging the locations of active
sensor nodes. Another model-independent localization method,
that can also be viewed as a special case of the aforementioned
estimator, is to detect the sensor node with the strongest energy
measurement and set the location estimate equal to its location
[4], assuming that this node is the closest one to the source, the
so-called closest point of approach (CPA). In our previous work
[13], a POCS based algorithm for model-independent localiza-
tion was derived. In particular, a method for estimating the dis-
tances between the sensor nodes and the source of interest was
developed, based on the assumption of uniform deployment of
the sensors over the field being monitored. It is important to
make clear that the method proposed here does not require such
an assumption.

In this paper, following a novel approach, we generalize the
notion of the CPA estimator which uses only one node, into an
estimator that uses a number of nodes. Thus, while in the CPA
estimator the source may lie close to the CPA node (in fact, in
the Voronoi cell of the CPA node), in our approach the source is
restricted to lie in a convex set that we call the sorted order-K
Voronoi cell of the nodes that participate in the estimation. As
this convex set is smaller than the respective one given by the
CPA estimator, better performance is obtained. In the following,
in Section II a formulation of the localization problem is given.
In Section III, we introduce the sorted order-K Voronoi dia-
gram and discuss some of its properties. In Section I'V, an opti-
mization problem for model-independent localization is given,
and a condition for computing the optimal solution is provided.
Also, centralized and distributed algorithms for localization are
derived. In Section V, a performance analysis of the proposed
method is given. In Section VI, simulation results are presented,
and the work is concluded in Section VII.

II. PROBLEM FORMULATION

Let us consider that N sensor nodes have been deployed, at
arbitrary locations, over a territory of interest. Let us also con-
sider that a source is present in the same area, and that it emits
a signal (acoustic, seismic, electromagnetic, etc.) whose atten-
uated energy can be measured by the nodes using suitable sen-
sors. Denote the 2 x 1 location vector of the nth sensor node
as r,, and the unknown location vector of the source as r. We
assume that each sensor n obtains an energy measurement y,
according to the model

Yn=0ag(tn —|) +w, n=12,....N (1)
where a > 0 denotes the energy of the emitted signal as mea-
sured at some nominal distance from r, function g : R* — Rt
is monotone decreasing, || - || denotes the Euclidean distance and
w,, denote zero mean white noise terms. The set of nodes that
detect the presence of the source is defined by the nodes with
measurement above a suitably selected threshold 7" as

A:{ll,lg,...,lL}:{n:ynZT}. (2)

A node whose index is in A is called active node. The localiza-
tion problem in such a context is a parameter estimation problem
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which can be stated as: Given the RSS measurements ¥; of all
active nodes [ € A, and the location vectors r,,, of all nodes,
provide an estimate r of the location vector of the source, taking
into account any known information about the energy decay
model. In this paper, the only such information about the energy
decay model that we assume is summarized in that the mea-
surements y,, follow (1), where g(-) is an unknown monotone
decreasing function.

Recently, it has been made clear that the solution to the lo-
calization problem can be computed very efficiently provided
that the distances between the sensor nodes and the source of
interest have been previously estimated. In particular, [8] and
[9] provide globally converging algorithms for obtaining an es-
timate of the location of the source in such a case.

However, it should be stressed that [8] and [9] presume that
the required distance quantities, i.e., ||r,, — r||, are somehow
available. Commonly, the estimation of these distances is based
on proper assumptions with respect to the form of function g(-).
In many applications, function g(+) takes the usual form

9(r) = — 3)

where (3 denotes the energy decay exponent, with typical values
in the range 8 € [2,4]. From (1) and (3), it can be seen that if
the parameters « and /3 are known, then each node can estimate
its distance from the source using

o\ /P
e — | = (—) . @
Yy

n

However, in practice, the aforementioned parameters may not be
known. Furthermore, it is also possible that function g(-) does
not take the form in (3). In this paper, we propose algorithms
that deal with such cases and make no assumptions regarding
the form of the actual energy decay function.

At this point it is important to make clear that the model of (1),
although quite general, does not take into account the cases of
sources that radiate nonuniformly (i.e., anisotropic sources) or
propagation environments with an energy decay exponent that
is different along different directions. Also, it is unable to model
strong reverberations of the signal emitted from the source due
to the presence of obstacles in the environment. Finally, many
nonline-of-sight channels cannot be modeled accurately. In such
cases, localization methods that are based on location finger-
printing [14] can be used, however, these methods require a
so-called offline initial phase during which the characteristics
of the source/environment must be accurately measured.

III. A GENERALIZATION OF VORONOI DIAGRAMS

In order to better explain the derivation of the proposed lo-
calization method, we begin our study by introducing a gener-
alization of the Voronoi diagram that we call the sorted order-K
Voronoi diagram . This diagram is a geometric construct which
turns out to be particularly useful for the problem at hand.

A. Voronoi Diagrams and Generalizations

Voronoi diagrams constitute an important mathematical
tool with applications in a wide variety of fields inside
and outside computer science [15]. Given a set of points
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Fig. 1. (a) Voronoi diagram for some example points ®. (b) Order-2 Voronoi diagram for ®. (c) Sorted order-2 Voronoi diagram for ®.

® = {p1,p2,...,pn} in R2, which are also termed as par-
ticles, the Voronoi cell of a point p; € ® is a convex set that
consists of all points in R? for which p; is the closest particle.
Setting ®; = ®\{p; }, the Voronoi cell of p; is defined by

V(p:i|®) ={p € R*: [|[pi—p| < |lp;—pll. Vp; € ;}. (5)

The aggregate of these cells is the Voronoi (or Dirichlet) tessel-
lation of the plane R2. The set of all Voronoi cells defines the
Voronoi diagram of ®, and we denote it as V(). Also, point p;
is called the nucleus of the cell V(p;|®).

An existing generalization of the Voronoi cell, so-called
order-K Voronoi cell , can be defined if we consider a set of
nuclei from @, rather than a single one. The properties and
construction of the order-K Voronoi cells have been well
studied [16]-[18]. Each such cell, is the locus of points on the
plane with the same K -nearest neighbors from ®. In particular,
if we define the locus of points closer to point p; than point p;
as the half-plane

h(pi,p;) ={P€R*:||p, —p|| < |p;—Pl} (©

then, given a set of points H C ® with |H| = K, the order-K
Voronoi cell of H is defined as

VHIe) = )

pi€H,p;€EP\H

h(pi, pj)- (7)

Similarly to the Voronoi diagram defined in the previous, the set
of all nonempty order-K Voronoi cells, is the order- K Voronoi
diagram of the points in ®.

In this paper, we introduce another generalization of the
Voronoi cell, by defining the Sorted order-K Voronoi cell that
is of interest to us.

Definition 1: Let ® = {p1,po2,...,Pn} be a set of points
in R2, and consider a vector of points V. = [Px, Pk, * * * Phy s
where py, € @, and k; # k;,Vi # j. The sorted order-K
Voronoi cell of vector v, denoted as V(v|®), consists of all
points in R? for which py, is the closest particle, and py, is
the second closest particle, and so on, up to particle py,, . For-
mally, if we let ¥, = ®\{pk,, Pky,-- -, Pk, } (i.e., Uy, is the

set containing all particles from ¢ minus those that appear be-
fore pg,,, in v), we define

V(v|®) ={p € R*: |pr, — p|| <Ilp; — pIl, VP; € Uy,
||pk'2 - P“ < ||pj - p||7 ij € \I/kz

lPr — Pl <llp; — P, VPj € Wiy }-
8)

Having defined the Sorted order-K Voronoi cell as above, it
is quite clear to see that they can also be expressed in terms of an
intersection of K simple Voronoi cells that are computed with
respect to the sets ¥y, as

V(V|¢) = V(pkl |\Ilk1) n V(pkz |\Ilk2) n---N V(pkK |\I}kK)'

&)
As we will see in the following, the above property can be
exploited in deriving an algorithm for computing the sorted
order-K cells, using algorithms that compute simple Voronoi
cells.

Since v can be any of the (g) K possible sorted vectors with
elements from ® and length K, V(v|®) may, of course, not
exist. Thus, it is convenient to make the following definition.

Definition 2: Let v be a vector of points from ®, defined as
previously. If V(v|®) # 0, then we will say that v is a feasible
sorting of points. Also, if V(v|®) = ), we will say that v is an
unfeasible sorting of points.

Similarly to the Voronoi diagram and the order-K Voronoi
diagram, we may define the sorted order-K Voronoi diagram as
the set of all nonempty sorted order-K Voronoi cells V(v|®),
for all possible vectors v that have K elements from ®. We
denote this diagram as

VK((D) = {V(V|(I)) V= [pklpk:) e pk1<]7 Pk; € (1)7 k; #kj}

(10)
It is obvious that V;(®) is identical to the simple Voronoi
diagram V(®). In Fig. 1 we demonstrate the simple Voronoi
diagram, the order-2 Voronoi diagram, and the sorted order-2
Voronoi diagram for five example points on R?.
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It is important to make clear that the sorted order- K Voronoi
cells V(v|®) of a vector v, are different from the order-K
Voronoi cells V(H|®). In fact, the difference between the
geometric construct explored here and the order-K Voronoi
cells lies in the sorting of the points used in their definition:
While an order-K Voronoi cell V(H|®) is defined in terms
of a set H, where elements in H are not ordered, V(v|®) is
defined in terms of a vector v whose elements are ordered. We
proceed in the following by giving some interesting properties
for V(v|®).

B. Properties of Sorted Order-K Voronoi Cells

As pointed out in the previous subsection, some vectors
v may be unfeasible sortings of points. This fact reflects the
geometric constraints related to the particular placement of the
points of ® over the plane R?. The following two Lemmas
provide us a clue on how many feasible vectors exist.

Lemma 1: For any set of points H (|H| = K), for which the
order-K Voronoi cell V/(H|®) is nonempty, there exists at least
one feasible sorting of points v with V(v|®) C V(H|®).

Proof: Since V (H |®) is nonempty, there exists at least one
point pg € V(H|®). Consider now the Euclidean distances
between point pg and the kth element of H as py, = ||po — hg||,
where h;, denotes the kth element of set H. If we sort these
distances in ascending order as p, < pg, < -+ < pg, and
consider the vector of points vo = [hy, hy, - - - h,. ], then by
definition, pg € V (vo|®). Thus V(vg|®P) is nonempty and vy is
a feasible sorting of points. Furthermore, all points in V(v |®P)
have the same K nearest neighbors, i.e., the elements of H.
Thus, V(vo|®) is a subset of V(H D). ]

Lemma 2: Givenaset ® of N points, where there are no more
than three cocircular points, the total number N of feasible
sortings v with K elements, satisfies N > (2K — 1)N —
(K2 -1) — le Si_1, for N > K > 1, where S}, is the
number of unbounded cells of the order-£ Voronoi diagram of
$ and SO = 0.

Proof: The proof is a direct consequence of [17, Lemma
1 and Theorem 2] ([17, Theorem 2] is also generalized in [18,
Theorem 4]). In particular, from Lemma 1 we have that for each
nonempty V(H|®) there exists at least one nonempty V(v |®)
which is always a subset of V/(H |®). Thus, the number of cells
V(v|®) is at least equal to the number of cells V(H|®). The
number of cells V/(H|®) is given by [17, Theorem 2] as (2K —
DN — (K2 =1) =0 Si_s. m

Having given the above properties of sorted order-K cells, we
proceed in the following section by pointing out their connection
to the model-independent localization problem.

IV. MODEL-INDEPENDENT LOCALIZATION

A. Voronoi Cells and Model-Independent Localization

The connection between sorted order-K Voronoi cells and
the source localization problem, can be stated by means of the
following Lemma.

Lemma 3: Consider a sorted vector of sensor locations v =
[Tk, Tk, -~ Tk, ], and a source located at r. Then, the event in
which sensor k; is the closest sensor to the source, and sensor
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ko is the second closest sensor to the source, and so on, up to
sensor ki being the K -th closest sensor to the source, can only
be possible if V(v|®) is not the empty set, that is, if v is a
feasible sorting of points, where now ® = {rj,ra,...,ry}.
Also, r must be a point in V' (v|®). Moreover, in this case any
monotone decreasing function g(-) satisfies

gl —rx,[)) = g(llr = v, 1) > -~ > g(llr = vael]) (A1)

and g(||lr — rr. ) > g(||r — r.n||) for all m where r,, is not an
element of v.

Proof: Using the definition of V(v|®) we have that the
points r € V(v|®) are the only ones that satisfy

v —rp, | <le—rp || <o < le =g | (12)

and ||r—r, || < ||r—r,,|| for all m where r,,, is not an element
of v. Also, considering any function g(-) that is monotone de-
creasing and inserting it into the previous inequalities, we have
that points r € V(v|®) are the only ones satisfying the given
property.

The above Lemma is, in fact, a geometric constraint that links
the source location r to the sorting of the distances between the
source and the sensor nodes of the network. Thus, if we knew the
correct sorting of the distances then we would be able to restrict
the space in which the source may lie, and this space would be
the cell V(v,|®) that corresponds to the correct sorting v,. W

B. A Cost Function for Localization

It can be shown [5] that when the energy decay model
is known and under the assumption that w,, are zero mean
Gaussian random variables with the same variance, then Max-
imum Likelihood estimation is accomplished by minimizing
the cost function

Ir

O(r,a) =Y (i — ag(llr — ri)))?

1=l

13)

which is defined in terms of the measurements and locations of
active nodes in A = {ly,ls,...,l1}. In the case explored here,
where the energy decay function g(-) is not known, the above
cost function cannot be used. Instead, a cost function that tries
to identify a proper energy decay function as well as the location
of the source should be used. Consider the cost function

lr,

J(r.h(-)) =Y (g = h(llr — i)

1=l

(14)

where r can be any point in the plane and h(-) can be any
monotone decreasing function. Consider now that we are able
to find a point ry and a monotone decreasing function h,., (-) for
which (14) attains its minimum value, J(ro, hy,(-)). Then, rq
is an optimal solution for the model-independent localization
problem, in the sense that there exists an energy decay model
hy, (+) that best describes the acquired measurements. Also, if
there exists another pair {ry, h,, (-)} with J(r1, ks, (+)) equal to
J(ro, hey(-)), then point ry is also an optimal solution. Thus, in
general, (14) may be minimized for r € £, where L is the locus
of points for which there exists a monotone decreasing function
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that minimizes (14). Although minimization of (14) seems in-
tractable, there exists a condition under which the optimal locus
of points £ can be computed. This result is given in terms of the
following Theorem.

Theorem 1: Consider the sorting of the location vectors of
activenodes v4 = [rg, Tk, - - - T'), | determined by the sorting of
the measurements y,, > yr, > --- > yi, , assuming that there
are no equal measurements. Then, if V(v 4 |®) has positive area,
where ® = {ry,ro,...,ry}, the optimal solutions of (14) are
internal points of V(v 4|®) and vice versa.

Proof: Consider any point r that is an internal point of
V(v4|®). By the definition of V(v 4|®), we have that

o —rp, | <lr—rp || <o <le =g, | (A5)

and ||r—ry, || < ||r—ry,|| for all m where r,, is not an element
of v 4. Thus, among the monotone decreasing functions charac-
terized by Lemma 3, there exists a monotone decreasing func-
tion o (-) satisfying e ([t — 2, ) = i, e ([le =1y 1) = g
...and hy(||r — rg, ||) = Yk, - Substituting into (14), we obtain
J(r, he(+)) = 0. Consider now any sorting of the location vec-
tors of active nodes different from v 4. This sorting will corre-
spond to a sorting of the measurements y that is not monotone
decreasing. If the sequence of measurements is not monotone
decreasing, then we cannot find a monotone decreasing func-
tion giving a squared error equal to zero, thus (14) attains its
minimum value for all points inside V(v 4|®). ]

In fact, we can generalize the aforementioned Theorem so as
to include also the case of equal measurements. If there is a set of
pairs of nodes with equal measurements, then the locus of points
L for which (14) can be equal to zero, would be non empty
only if the intersection of all the lines that are defined as the
perpendicular bisectors of these pairs of nodes exists. However,
we consider this event as quite rare, and thus we are interested
only in the case covered by the previous Theorem.

C. Centralized Localization Algorithms

In this section, we propose two centralized algorithms that try
to exploit Theorem 1 in order to localize the source of interest.
The algorithms are centralized, in the sense that all the measure-
ments acquired by the active sensors must be transmitted to a
so-called “Fusion Center” for further processing. Furthermore,
the Fusion Center does not have the processing and memory lim-
itations that the nodes of the sensor network usually have, and
thus it can perform a more elaborate processing. A distributed
localization algorithm is considered in the next subsection.

Using the proof of Theorem 1 we can easily see that a model-
independent localization algorithm, should try to construct a
sorted order-K Voronoi cell P, so that for all points r € P
the cost function in (14) would be equal to zero. If this is pos-
sible, then K would be equal to L, the number of active nodes.
Of course, in the case of noisy measurements, this might not be
possible since the sorting of the measurements of active nodes
in descending order might not reflect the correct sorting of the
distances from the source, in ascending order. Thus, in such a
case, the localization algorithm should at least try to maximize
the order K of the cell P. Consider now the algorithm A; in
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TABLE 1
CENTRALIZED LOCALIZATION ALGORITHM A ;

Input: A, ®, and y; forall [ € A
Output: A convex polygon P in which the source may be located

1. Sort the measurements of active nodes as yx, > Yk, > -+ * > Yk,
2. P = V(ry, |®\{ri, })
3. FOR 1=2 TO L
Py =V(rg, |®\{re,, Ty, T, })
IFPNP =0
Stop and output P
ELSE
Update P = PN P,
END IF
END FOR

Table I. The algorithm starts by sorting the measurements of ac-
tive nodes in descending order, and initializes the polygon P to
the Voronoi cell of the node with the maximum energy measure-
ment. In the sequel, using the property of (9) regarding the incre-
mental construction of a sorted order- K cell, the algorithm tries
to increase the order of the cell P, by visiting the other nodes
of the network, in order of decreasing measurement. If such an
order increase is possible, the algorithm computes the new cell.
In the opposite case, the algorithm stops.

Consider that A; stops at a sorted order-K Voronoi cell
V([tk Ty - - - Tr, ||P) with K < L. It is quite easy to see that,
in this case, the algorithm has detected the optimal solution for
a “truncated” form of the cost function in (14) which is given by

ki

T(e,h(-) =Y (g = h(lle = xa]))?

=k

(16)

and has only K out of the L terms of (14). In other words, algo-
rithm A; will find the optimal solution in the case where the set
of active nodes was defined in terms of a threshold 7' satisfying
yk1(+1 <T S Yk -

Let us now relax the requirement for the cost function being
equal to zero. This means that we may allow a node with a
smaller measurement appear before a node with a higher mea-
surement, as long as the resulting sorting is a feasible one. How-
ever, it is reasonable to allow this, only in the case where the
placement of the node with higher measurement before the other
one would lead to an unfeasible sorting. The algorithm that im-
plements this scheme appears in Table II, and we denote it as
algorithm As. This algorithm executes a number of steps, and
at each one it tries to increase the order of the cell P. To this end,
it maintains a set O of the labels of the nodes which have not yet
been taken into account, as well as a set I that contains the labels
of the nodes already used. An update step is executed as long as
there exists an active node, not yet taken into account, whose in-
corporation would lead to a feasible sorting. If many such nodes
exist, the one with highest measurement is preferred. It is quite
easy to verify that A, will always take into account a number of
active nodes which is at least equal to that used by A;.

There are a number of interesting properties that are satisfied
by both A; and As:

1) In the case that one is interested in a single point estimate

r for the source location, rather than a convex polygon, we
should include a final step to the algorithms A; and As
during which such a single point would be computed. In
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TABLE II
CENTRALIZED LOCALIZATION ALGORITHM A,

Input: A, ®, and y; forall [ € A
Output: A convex polygon P in which the source may be located

1. Sort the measurements of active nodes as Yg, > Yy > =+ > Yk,
2. P =V (rg, |®\{rg, })
3. 0 = {ko, ks, ..., kL}
4.1 ={k1}
4, WHILE F = {k € O:PNV(rg|®\{rn : n € I}) # 0} not empty
Select k£ with maximum yj among all k£ € F'
Update P = PNV (rg|®\{rn : n € I})
Update O = O\{k}
Update I = I U {k}
END WHILE

the case where the output polygon is bounded, a reasonable
choice for this task is to compute the so-called Fermat-
Weber center of that polygon. The Fermat-Weber center
of a planar object P, is a point in the plane, such that the
average distance from it to the points in P is minimal. In
[19], a linear-time approximation scheme for finding the
Fermat-Weber center of a convex object was derived.

2) It can be seen that there is no need to transmit the exact
values of the measurements to the Fusion Center for pro-
cessing. Rather, if the Fusion Center knows only the sorting
of the measurements it can execute A; or A, in the same
manner as if the exact measurements were available. This
property suggests that energy savings are possible if the
nodes first cooperate to determine their sorting, and then
transmit to the Fusion Center. For example, the algorithms
of [20] can be used to determine the sorting of the mea-
surements of the nodes.

3) Another interesting property is that, in the noise free case,
A and A, become equivalent and furthermore, both yield
the optimal solution that minimizes (14). This is easy to
verify, since in the noise-free case, the sorting of the mea-
surements will yield the correct sorting of the distances.

4) Another interesting property of the derived algorithms has
to do with noise robustness. In particular, consider that the
algorithm (either A; or As) has managed to identify the
correct sorting of the first K; nodes, while there are still
K — K; nodes whose sorting is not the correct one. This
scenario is a very common one, since nodes near the source
usually have better signal to noise ratio, and thus, can be
ordered correctly with higher probability than nodes away
from the source. In such a case, the algorithm will identify
the optimal polygon P during the K; update step. It will
then start making erroneous decisions. Nevertheless, since
all subsequent polygons are subsets of the correct polygon
identified at the K; step, it follows that the maximum error
(Euclidean distance between the source and its estimate)
cannot be greater than the diameter of the convex polygon
P, even if we select the final estimate anywhere inside the
output polygon. Note that the diameter of a convex polygon
P is defined as the maximum distance between any pair of
points than belong to the set P.

Regarding the complexity of the proposed algorithms, we
note that the initial Voronoi tesselation, requires O(N log N)
operations [17]. Computing a higher order cell requires only
local processing, since after removal of a particular point p from
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®, only the cells having point p as Voronoi neighbor must be up-
dated. Also, the computation of the intersection of two convex
polygons can be computed in linear time [21].

D. Distributed Localization Algorithm

In this section, we derive a simple distributed algorithm
for model-independent localization. The algorithm is termed
as distributed since it does not require the transmission of
the measurements to a Fusion Center for processing. Instead,
the nodes of the sensor network exchange local messages
and update the location estimate accordingly. The distributed
algorithm is based on the property given by (9), which can be
written in terms of the active nodes of the network as

V(V|(I)) = V(rkl |\I/k1)ﬂV(I‘k2 |\I}k2)m : 'ﬁV(I‘kL |\IlkL) (17

where ® = {ry,ro, ..
V = [tk Tk, - Tk, |-

Consider now that each active node k; has computed the re-
spective set V(ry,|¥g,). In such a case, the method of projec-
tions onto convex sets (POCS, [8]) can be used to compute a
point on a boundary of V(v|®), if it is not empty. This algo-
rithm would be similar to the algorithm proposed in [8], with the
only difference that now the involved convex sets are different.
In particular, while the algorithm of [8] uses disks centered at
the locations of active nodes with radii equal to the estimated
source-sensor distances, the convex sets used for model-inde-
pendent localization are the sets V (rg, | Uy, ).

Of course, computation of the exact sorted order-K Voronoi
cell V(v|®) would require a large number of nodes, since the
sets Wy, contain almost all of the node locations in ®. However,
if each active node k; uses the algorithm of [22] to compute the
Voronoi cell V(rg, | ¥, ), then POCS could be used to compute
V(v|®) as the intersection of these cells, i.e., exact distributed
computation is, in this case, possible.

However, in this work we propose an approximate solution
that results in a much simpler algorithm. In particular, an
approximation to a Voronoi cell V(r|®) can be obtained as
V(r|®"), for ' C &. In fact, if &’ is large enough so as to con-
tain all the Voronoi neighbors of r, then V (r|®’) = V (r|®)[22].
Consider now the sets of node locations

. ,I'N},\Ilk, = (I’\{I‘k”I‘kQ, .. .,rkj}and

Uh(p) ={r1 € ®:0 < |[rg, — vl < p,yr; >t} (18)

which are subsets of the respective sets Wy,. In particular, the set
W5, (p) contains the locations of the nodes that are close to the
active node k; (i.e., within distance p), and have smaller energy
measurement. According to the above, an approximation of the
cell V(v|®) is given by

V(v]@) = V (rx, |05, )NV (2, [ W5, )0 -0V (22, [0, ) (19)

where we have omitted the index p from the sets ¥}, (p) for sim-
plicity of notation. Of course, computation of the sets W}, (p) re-
quires the exchange of some messages among the nodes of the
sensor network. As an example, each active node might broad-
cast its measurement in a time division multiple access scheme,
and wait for a one-bit response from nearby nodes with smaller
measurement. In any case, such communication is required only
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TABLE III
DISTRIBUTED LOCALIZATION ALGORITHM A3z AT NODE k

[ Parameters: Threshold T', radius p |

1. Acquire measurement ¥y,
2Fy, >T
Compute ¥/ (p) using local messages
REPEAT a number of times
Listen for a message 6, from a nearby active node
FOR the elements r € ¥} (p)
IF 2(rj, — )70 — [rg||* + [[r]|> < 0
Update 6 to 6 — 2(rp=0)T0—||rg |2 +|Ir[|?

2[[(ri =)
END IF
END FOR
Send 6 to the next active node
END REPEAT
ELSE
Do not participate into the estimation
END IF

(rg —1)

for the initialization of the localization algorithm and each mes-
sage must be transmitted at a distance that can be at most p.

Thus, if each active node k; of the network is able to compute
the set V'(ry, |V}, ), the POCS algorithm can be used to com-
pute an approximate solution. Furthermore, we note that active
nodes do not need to construct any Voronoi tesselation: The set
V(rg,|¥},) can be decomposed further, into an intersection of
half-planes, as

V(I‘ki

Vi) = [ Alre.re). (20)

ke\If’ki

Thus, using the above equation, each node k; can compute a
projection of a point § onto V'(r, |V}, ), by simply computing
projections of @ onto the half-planes (convex sets) that define
V(rg, |V}, ), in a POCS fashion.
It is easy to verify that @ € h(r;,r;) is equivalent to
2(r; — ;)70 — [|ri]* + [|r]1* > 0 2n
and that if a point @ ¢ h(r;,r;), then the projection of  onto
h(r;,r;) is the point

(ri — ;)"0 — | |* + [r; |I?
2||(ri — ;)

Thus, using the above formulas, the POCS method can be used
to obtain a point on the boundary of V(v|®), in the case where
it is not empty, in a decentralized fashion. The distributed algo-
rithm that summarizes the above, is shown in Table III.

Although the previous algorithms have been developed con-
sidering a two dimensional region of space, they can easily be
extended into the three dimensional space. In particular, algo-
rithms A; and As can be used in three dimensions without any
modification, as long as the geometric operations they rely upon
(Voronoi tesselation, intersection of convex polyhedra, etc.) are
implemented in three dimensions. Also, algorithm A3 can be
modified to compute projections onto half-spaces rather that
half-planes.

9, 02 22)

(ri —rj).

V. AN ANALYSIS OF THE PROPOSED ALGORITHMS

In order to analyze the performance of the proposed localiza-
tion method, we will assume that the nodes of the network are
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uniformly deployed over the plane R?. Thus, the locations of
the nodes define a homogeneous Poisson process in the plane,
and the respective random Voronoi diagram is the well known
Poisson-Voronoi tessellation of the plane R2 [23], [24]. The in-
tensity A of the Poisson process is a measure of the density of
the sensor network, i.e., the expected number of nodes per unit
of area. Similarly to the Poisson-Voronoi tessellation, we may
define the order-K Poisson-Voronoi tessellation of R2, as well
as the sorted order-K Poisson-Voronoi tessellation of R?, as the
respective random tessellations in case there are infinite points
in ® uniformly deployed over the plane, with intensity A.

Since the derived algorithms A; and A, compute a convex
polygon in which the source may lie, it is reasonable to study
the area of such polygons as a measure of the accuracy of this
localization methodology. Also, we will not delve into the par-
ticular details of A; or As, rather, we will focus on the gen-
eral case where an algorithm has detected the correct sorting
of at least K nodes of the network, and we will try to charac-
terize the expected performance of the method in terms of the
parameters K and A. Thus, let us define the random variables
Xk, K = 1,2,..., where Xx describes the area of the sorted
order-K Voronoi cell in a sorted order- K Poisson-Voronoi tes-
sellation generated by a point process with intensity .

Lemma 4: The first two moments of the random variables
Xk, satisfy the following:

1 1.280176
Elx] =<, EXf]~-—F5— (23)
A A
and for any finite K
0 < E[Xx] < B[] (24)
0 < E[X%] < E[&]] (25)

Proof: First, the equations in (23) were proven in [24] con-
sidering simple Poisson-Voronoi tesselations, and they apply to
our case since for K = 1 the sorted order-K Poisson-Voronoi
tesselation is equivalent to the simple Poisson-Voronoi tesse-
lation. Concerning now the inequalities in (24) and (24), we
note that since the random variables X'x are nonnegative, and
we can always find a strictly positive instance of X, we have
that 0 < E[Xk] and 0 < E[XZ]. Consider now a realiza-
tion of ®, and define /N7 instances of the random variable X
as X1, X1,2,-..,X1,n,. Then each one of the polygons asso-
ciated with each one of the /N7 such instances of X7, will be de-
composed into a number of polygons in the sorted order-K tes-
sellation. Let us denote the aggregate of the areas of these poly-
gons as X 1,Xxk 2,..., XK n,. These areas are instances of
the random variable X'x . Furthermore, we have that the sums
of the two sets of instances will be equal to each other, and that
N, K Z N 1. Thus

E[Xk] =

lim
Ng — oo

1
N_ Z XK7n1<
K 1

nk=
N,
Ny 1
= lim _— X
Ny ,Ni — oo <NK Ny ngl 1,n1)

lim

Ny
— | E[X
NK,Nl—)oo<NK> [ 1]

(26)
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since the limit

lim 27)

(%)
— | <1
Ng,Ni — oo \ Nig ) —

exists, because N > N;. Combining now (25) and (26), we
have that E[Xk]| < E[X;]. The proof for the second moment is
similar. [ |

Using the above Lemma, the performance of the proposed
localization method is characterized by the following Theorem.

Theorem 2: Consider a sorted order- K Poisson-Voronoi tes-
sellation with intensity A, and a uniformly distributed point r
in the plane. The expected area of the sorted order- K Poisson-
Voronoi cell of this process that contains the point r is given by

 BlA]
B = Bl

(28)

Proof: Fix one instance of ® and consider a number N of
instances of sorted order-K Voronoi cells. Denote the areas of
each such instance as Xg 1, X 2,..., Xx N, . The expected
area of the cell that contains point r, given that point r is in one
of the N cell instances, is given by

Ni
EK,NK = E anXKmK

ng=1

(29)

where p,, . is the probability that r € X 5, . Since point r is
uniformly deployed over the plane, p,,, will be proportional to
the area of cell Xk ,,, , thus

— XKmK
P = "N,

Z XK,”K

ng=1

(30)

Substituting into the above equation and considering all possible
instances, we have that

Ng 2

S e
Nk

=1 Z XK,”K
nx=1

Nx

> X

nK:l
Nk
Ng
Z XK;TLK

ng=1

Ng

Ex =

lim
Ng — oo

lim
Ny — oo

lim
N — oo

_ B[xR]
RN

€19

where we have divided numerator and denominator by N, and
the limits exist from Lemma 4. [ ]
Using Lemma 4 and the above Theorem, we have that

N 1.280176

E1~7.

\ (32)
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However, computing values of Fx for K > 1 can be rather
difficult. Thus, we turn our attention to the properties of F[Xk].
Theorem 3: The expected area of the sorted order- K Poisson-
Voronoi cell, generated by a process with intensity A, is bounded
by
1

ElXk] < 2K -1

(33)

for any finite K.
Proof: Consider (24) and (26) from the proof of Lemma 4.
Using Lemma 2, we have that

Ny Ny
— < 7 )
Ne = @K - DN, — (K2 1) - %k, 5

(34)

Dividing By N; the numerator and the denominator at the right
hand side of the above inequality, we have that

. 1 1
1) <
Nee N oo (Nk> SoK 1 (35)
since (K2 — 1)/N; Will converge to zero, and
ZkK—1 Sk—1
Ng,N; — oo N1 (36)

the above can be verified by considering each of the terms in the
summation as

S _ SN
N: N, Ny

where, in the limit, Si. /Ny = Pr (Unbounded Order—k Cell).
Thus, since any order-k Voronoi cell is a subset of the union of
the k& Voronoi Cells of the k particles that define the order-k
set, and we know that Poisson-voronoi cells are bounded with
probability 1, then it follows that

Sk
im — =0
Ni,Ni — oo Ny,

(37

(38)

for any finite k. Furthermore, from Lemma 4, we have that the
limit of N7 /Ny, cannot be zero, because in that case we would
have that E[X,] = 0, which is not true. Thus, the limit of
Ny /Ny is a finite number, and multiplied by the limit of (37),
will yield a value zero. Combining (23), (25), and (34), yields
the desired result. [ |

As a practical example for the bound in (32), consider a wire-
less sensor network with a density of one node per square meter.
Then, in a scenario with three correctly sorted node measure-
ments (K = 3), we have an expected area smaller than 1/5
square meters in which the source may lie. At this point, it
should be mentioned that the bound in (32) is expected to be
quite loose for large K. This is due to the fact that properties
of the order- K diagram were used, rather than properties of the
sorted order- K diagram. Using simulations, we were able to see
that

1

Elxe]l~ m gz mn

(39)

but we were unable to prove this equation for K > 2. For K =
1, the well known result E[X;] = 1/ is obtained. For K = 2,

Authorized licensed use limited to: Dimitris Ampeliotis. Downloaded on May 29,2010 at 14:28:18 UTC from IEEE Xplore. Restrictions apply.



434

using (26), and the fact that the typical Voronoi cell has 6 edges
[24], we have that

lim — ==

Ni,Ns — oo Ny 6 (40)

which is consistent with (39).

Of course, in the case where the sensor nodes of the network
are not uniformly deployed over the field of interest, some per-
formance degradation may be noticeable. However, since the
proposed algorithms A; and A5 compute a region of space in
which the source may be located, the area of the polygon can be
used as a measure of the accuracy of the estimation. This fact,
in some cases, may constitute an advantage over existing local-
ization methods.

VI. SIMULATION RESULTS

A. Verification of the Analytical Results

In order to verify the results derived in the previous Section,
we performed the following two experiments: (A) We simulated
50.000 instances of a Poisson point process, having 100 points
uniformly distributed in the unit square. Thus, this process has
A = 100, in the examined area. For each instance of the point
process, a point source r was placed at the center of the unit
square, so as to assure that the Voronoi cell in which r lies will
be bounded. For each such instance, we computed the sorted
order-K cell in which r lies, for K = 1,2,...,20, and kept
the area of each one cell. (B) In the second experiment, 50.000
instances of a point process were simulated as in the previous,
but this time no source was placed on the plane. Rather, a
bounded sorted order-K cell was chosen randomly, and its area
was stored.

Fig. 2 shows the results of the previous two experiments. In
particular, the result of experiment (A) appears in Fig. 2 as the
line labeled “Average area of the cell with the source”, as a func-
tion of the order K. Using data from experiment (B), we give
three curves in Fig. 2: The average area of the randomly selected
cell (labeled as “Mean of X' ), the average of the squared areas
of these cells (labeled as “Mean of X 12(”), and their ratio. Finally,
we also plot the bound of (32). Thus, from Fig. 2 we verify the
following two results:

1) The bound of (33) is greater than the mean of the area of
the typical sorted order-K cell, however this bound is quite
loose.

2) From Fig. 2, we can verify the validity of Theorem 2. In
particular, we observe that the performance of the local-
ization method, measured by experiment (A), is very close
to the term Ex = E[X2]/E[Xk], which can be approxi-
mated using experiment (B).

B. Performance Comparison With the Maximum
Likelihood (ML) Estimator

In order to assess the performance of the proposed algorithms,
and compare it to the performance of previously proposed es-
timators including the ML estimator of [5] (which assumes a
known energy decay model), we performed some numerical
simulations. In particular, N nodes were uniformly deployed
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Fig. 2. Verification of the analytical results.

over a 100 m x 100 m field, where N was increased from 300
to 3100 in 200 increments. A signal source with & = 100 was
placed atr = [50 50]7, i.e., at the center of the deployment field.
The RSS measurements at the sensor nodes were corrupted by
zero mean additive white Gaussian noise (AWGN) with vari-
ance 02 = 4/5. A threshold T = 5 was used to detect active
nodes, i.e., only sensors whose SNR (y,/ o?) is greater than
8 dB take part in the estimation procedure. Fig. 3(a) demon-
strates the root mean square (RMS) localization error of various
algorithms (computed as the average of the errors of 10.000 dif-
ferent realizations), as a function of the average number of active
nodes. The energy decay model used for this experiment is given
by g(x) = 1/22. Also, in order to also include the performance
of the Maximum Likelihood estimator of [5], only experiments
that resulted in more than 3 nodes being active were taken into
account, for all algorithms. Fig. 3(b) demonstrates the average
numbers of nodes used by algorithms A; and As, which are
smaller than the number of active nodes (dashed line).

For the two POCS based algorithms (i.e., the POCS with
known model and A3), we performed 10 iterations over the set
of active nodes, with a constant relaxation sequence equal to
1, while the final estimate was given as the average of the es-
timates of the last iteration [8]. Also, the final estimate of al-
gorithms A; and A, was given as the average of the vertex
locations of the output polygon. Replacing this estimate with
the so-called Fermat-Weber center of the output polygon, would
certainly lead to further performance improvement. Finally, for
the ML estimator, we used exhaustive search over a 101 x 101
square grid, close to the true source location [i.e., ranging from
(48,48) to (52,52)].

From Fig. 3, we make the following observations:

1) Concerning our distributed algorithm A3, we notice that it
obtains better localization accuracy than other distributed
model-independent algorithms, such as the CPA and the
Averaging [12] estimators. A neighborhood radius of 10
meters, used for local negotiations among nodes, is found
to yield very good results for the network densities exam-
ined, since further increase of this radius does not offer a
significant performance improvement.
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Fig. 3. (a) RMS error as a function of the average number of active nodes, at least 3 nodes active, g() = 1/22. (b) Average number of nodes used by A; (left
bars) and A, (right bars), the gray portions of the bars are the average numbers of correctly sorted nodes.

2) Surprisingly, our model-independent centralized algo-
rithms A; and A,y offer performance that is somewhat
better than the performance of the POCS estimator of [8],
even though the latter algorithm has perfect knowledge of
the power of the source and the energy decay model. Also,
A offers little performance improvements relative to A;.
It is quite clear that the distributed algorithm A3 does not
obtain the performance of its centralized counterparts, Ay
and As, even when a large value of p is used. This is mainly
due to the fact that the distributed algorithm does not take
into account the geometric feasibility constraints that are
exploited by the centralized algorithms.

From Fig. 3(b), we can see that the centralized algorithms
Aq and A, use only a subset of the active nodes. As ex-
pected, A, uses more nodes than A;. Also, As is shown
to be able to increase the number of nodes that are sorted
correctly [gray portion of the bars in Fig. 3(b)], however,
this has only negligible performance gains, as shown in
Fig. 3(a).

In order to further explore the relationship between the per-
formance of the proposed localization method and the perfor-
mance of the ML estimator, we tested the ML estimator in the
case where accurate knowledge of the energy decay exponent
[ is not available. Fig. 4 presents the performance of the ML
estimator when the assumed value for [ is varied from 2 to 3 in
increments of 0.2 while the correct value is equal to 2. From this
Figure, we can see that the performance of the ML estimator de-
teriorates as the assumed (3 is increased. Furthermore, in many
cases, the proposed algorithm A, offers better performance.

3)

4)

C. Performance for Various Models

In this section, we demonstrate the performance of the pro-
posed algorithms without the inclusion of the ML estimator of
[5], thus we allow all experiments that result in at least one ac-
tive node. All the other parameters used in this experiment are
the same as those mentioned in the previous. Fig. 5 presents the
RMS localization error performance in this scenario, where in

1.4 T T T T T

1.2

o o o
EN o o -

RMS Localization Error, m

o
N

Average Number of Active Nodes

Fig.4. RMS error as a function of the average number of active nodes, at least 3
nodes active, g(z) = 1 /2. Comparison between algorithm A, and maximum
likelihood for various assumed values for 3.

Fig. 5(a) g(z) = 1/22, and in Fig. 5(b) g(x) = 1/ is used as
the energy decay function. However, both models result in sim-
ilar conclusions, which can be summarized in the following.

1) Our centralized localization algorithms A; and Ao offer
better localization accuracy compared to the accuracy of
the CPA and the Averaging estimators, when more than two
nodes are on average active.

Ay and A, offer almost indistinguishable performance,
which is better than that of the POCS estimator of [8], al-
though the latter assumes a known energy decay model and
source power. The POCS estimator, approaches the perfor-
mance of A; and A5 when more than 10 nodes are on av-
erage active.

The distributed algorithm Ajs, offers better localization
performance than the CPA and the Averaging estimators,
when more than 5 nodes are on average active.

2)

3)
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Fig. 5. RMS error as a function of the average number of active nodes, at least 1 node active: (a) g(x) = 1/22. (b) g(x) = 1/a5.

VII. CONCLUSION

In this paper, a cost function for model-independent source

localization using energy measurements was considered. Also,
a condition under which the optimal solution can be computed
was given. This condition, involves a geometric construct called
the sorted order- K Voronoi diagram, whose properties were ex-
amined. Also, centralized and distributed algorithms that ex-
ploit the derived condition for localization were proposed. Some
theoretical aspects regarding the performance of the algorithms
were explored. Finally, simulation results verified the effective-

ne

ss of the derived algorithms.
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