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ABSTRACT

This work addresses the problem of estimating the locations of multiple acoustic
sources by a network of distributed energy measuring sensors. The maximum likelihood
(ML) solution to this problem is related to the optimization of a non-convex function of,
usually, many variables. Thus, search-based methods of high complexity are required in
order to yield an accurate solution. Considerable reduction of the complexity can be
achieved by means of an alternating projection (AP) algorithm that decomposes the
original problem into a number of simpler, yet also non-convex, optimization steps. The
particular form of the derived cost functions of each such optimization step indicates
that, in some cases, an approximate form of these cost functions can be used. These
approximate cost functions can be evaluated using considerably lower computational
complexity. Thus, a low-complexity version of the AP algorithm is proposed. Extensive
simulation results demonstrate that the proposed algorithm offers a performance close
to that of the exact AP implementation, and in some cases, similar performance to that
of the ML estimator.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Technology advances in microelectronics and wireless
communications have enabled the development of small
scale devices that integrate sensing, processing and short
range radio capabilities. The deployment of a large
number of such devices, referred as sensor nodes, over a
territory of interest, defines the so-called wireless sensor
network (WSN) [1,2]. WSNs have attracted considerable
attention in recent years and have motivated many new
challenges, most of which require the synergy of many
disciplines, including signal processing, networking and
distributed algorithms. Among many other applications,
source localization and tracking has been widely viewed
as a canonical problem of wireless sensor networks.
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Furthermore, it constitutes an easily perceived problem
that can be used as a vehicle to study more involved
information processing and organization problems [1].

In this work, we deal with the problem of source
location estimation using passive and stationary acoustic
sensors. Such source localization methods have a wide
range of possible applications. Indoor applications include
the localization and tracking of human speakers for the
purposes of video conferencing. In an outdoor environ-
ment, a WSN deployed in an open field can utilize the
sound emitted from a moving vehicle in order to track its
location, for example in surveillance applications. In sonar
signal processing, the focus can be the localization of
underwater acoustic sources (i.e. sea mammals, divers)
using an array of hydrophones.

Most of the source localization methods that have
appeared in the literature can be classified into two broad
categories, according to the physical variable they utilize.
The algorithms of the first category utilize time-delay-of-
arrival (TDOA) measurements, whereas the algorithms of
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the second category use direction-of-arrival (DOA) mea-
surements. DOA estimates are particularly useful for
locating sources emitting narrowband signals [3], while
TDOA measurements offer the increased capability of
localizing sources emitting broadband signals [4,5]. How-
ever, the methods of both categories impose two major
requirements that render them unappropriate to be used
in wireless sensor networks: (a) the analog signals at the
outputs of the spatially distributed sensors should be
sampled in a synchronized fashion and (b) the sampling
rate used should be high enough so as to capture the
features of interest. These requirements, in turn, imply
that accurate distributed synchronization methods should
be implemented so as to keep the remote sensor nodes
synchronized and that high frequency electronics as well
as increased bandwidth are needed to transmit the
acquired measurements.

Due to the aforementioned limitations, source locali-
zation methods that rely upon received signal strength
(RSS) measurements—originally explored for locating
electromagnetic sources [6,7]—have recently received
revived attention [8-25]. These approaches may be
categorized as follows:

(a) Single source localization algorithms, which can be
further divided into:

(a1) Algorithms that rely upon a known energy decay
model.

(a2) Model-independent localization algorithms that
assume a general, unknown, monotone decreas-
ing energy decay function.

(b) Multiple source localization algorithms.

Let us briefly review the existing literature under the
above categorization.

Category (al): In [8], an energy decay model for
acoustic sources in free air was proposed and verified
experimentally. Also, in order to avoid ambiguities due to
the unknown power of the source, a localization algorithm
that computes ratios of measurements was reported. In
[9], the authors considered an incremental subgradient
optimization algorithm to yield the source location in a
decentralized fashion. In [10] the authors considered
various least squares based criteria for localization. The
authors of [11] proposed a linear least squares localization
algorithm, as an extension of the one proposed in [12], and
considered its distributed implementation. In [14], the
problem of single source localization with a known energy
decay model was formulated as a convex feasibility
problem. Thus, the method of projections onto convex
sets (POCS) was applied to yield a fast converging
algorithm that was also shown to be amenable to
distributed implementation. In [15], the algorithms pro-
posed in [8] were extended by means of proper weighting
schemes. The authors of [16] identified conditions under
which gradient descend minimization of a least squares
criterion is globally converging. More recently, the authors
of [17] proposed the so-called normalized incremental
subgradient algorithm. In [18], the authors considered
various weighted least squares based algorithms, proved

the equivalence of some algorithms previously reported,
and proposed a novel least squares algorithm. In [19],
linear least squares based algorithms able to estimate the
source location and its power were reported.

Category (a2): In contrast to the abundance of the
works presented in the previous paragraph, the literature
on localization algorithms that do not assume a specific
form for the energy decay model is quite more limited. In
particular, in [8], the closest point of approach (CPA)
estimator was presented. This simple method sets the
location of the sensor node with the highest energy
measurement as the estimate for the location of the
source. Thus, no information about the energy decay
model is required. The expected performance of this
estimator was studied in [20]. In [21], it was proposed to
estimate the location of the source as the average of the
locations of nodes whose measurements are above a
predefined threshold. More recently [22], the probability
density functions of the distances between the source and
the closest, second closest, etc., sensor nodes were
derived. Also, it was experimentally shown that the
utilization of the expected values of the distances thus
obtained into a POCS based algorithm leads to a
performance very close to that of algorithms that have
accurate knowledge of the energy decay model.

Category (b): Similarly to the previous category, the
literature on multiple source localization from RSS
measurements is quite limited. In [23], the maximum
likelihood estimator was studied. As already mentioned,
the optimization problem related to ML estimation is non-
convex, and thus, search-based methods are required in
order to yield an accurate solution. In [24], a particle filter
based algorithm was proposed. The so-called importance
function of the proposed particle filter was derived using
results from [23]. Also, in [25], two methods for the
distributed implementation of the particle filter were
proposed. In [26], the authors consider an alternating
projection algorithm, where each optimization step is
performed using multi-resolution search. Thus, complex-
ity savings due to both the alternating projection
approach and multi-resolution search can be gained.

In this work, we elaborate on the alternating projection
method in order to further decrease its computational
complexity. In particular, in contrast to the work in [26],
we employ the projection matrix update formula for
deriving the functions that need to be maximized at each
step of the AP scheme. Also, we show that each evaluation
of the cost function that is used in the AP approach
requires O(N2) operations, where N, denotes the number
of sensors that participate in the estimation. Thus, in the
case where Nj is large, the evaluation of the cost function
at a number of search points would require much
computational effort. However, a careful inspection of
the form of the cost function reveals that, in some cases,
an approximate cost function that requires O(N,;) opera-
tions for each evaluation can be utilized. Motivated by this
fact, we propose a modified version of the AP algorithm
that, using a suitable criterion, can select either the exact
cost function or its approximate form, before proceeding
to each optimization step. Furthermore, a computation-
ally efficient initialization method is also proposed.
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The remaining of this work is organized as follows: In
Section 2 the formulation of the problem at hand is given.
In Section 3, we briefly review the maximum likelihood
and the alternating projection estimators. Also, in Section
3.3, a detailed complexity analysis of the AP scheme is
given. In Section 4, the suggested approximate cost
functions are presented and a criterion for choosing
between the approximate and the exact cost functions is
introduced. Also, in Section 4.3, we give a computationally
efficient method for initializing the location estimates, by
proposing a suitable multi-resolution optimization of the
exact cost functions. This initialization method is used by
both the exact and the approximate AP algorithms. In
Section 4.4, we give a short note regarding the distributed
implementation of the examined algorithms. Finally, in
Section 5 we explore the performance of the algorithms
via numerical simulations, and in Section 6 we draw our
conclusions.

2. Problem formulation

Consider that N sensor nodes have been deployed over
a p-dimensional (p € {2,3}) region of interest and define
as r,e RP*! . n=1,2,....N the vectors that represent
their respective locations. Each node is equipped with
an acoustic energy measuring sensor. Consider also that
within the same region there exist K isotropic acoustic
sources and define their location vectors as x;, € RP*!,
k=1,2,...,K. Adopting the energy decay model of [8],
the RSS measurement at the n-th sensor can be modeled
by the relation

K A "

ynzgnz

T Wn, n=12,....N, M
e, — x|

where |l - I denotes the Euclidean norm, Ay, is the strength
of the k-th source as measured at 1 m distance, f is the
attenuation exponent and w, denotes zero mean additive
white Gaussian noise (AWGN) with variance ¢2. Also, g,
denotes the so-called gain of each sensor. We have
assumed that the variance of the noise is equal at all
sensors for simplicity reasons, however, the results
presented here can easily be generalized in the case
where each sensor measurement is corrupted by noise of
different (known) variance. The attenuation exponent for
acoustic signals traveling in free air can be approximated
by = 2, whereas larger values of f§ are used to model the
energy decay of electromagnetic signals. In this work we
will treat f§ as a known constant, which is suitable for the
specific localization application (e.g. for localizing open
field acoustic sources). Also, we assume well calibrated
sensor nodes so that g, =1. Thus, the localization
problem consists in estimating the unknown vectors X,
k=1,2,...,K and the parameters A, k = 1,2,...,K, given
a single frame of measurements {y1,y2,...,yn} and the
known sensor location vectorsr,, n=1,2,...,N.
Although the energy decay model in (1) appears quite
simplistic, it is the one commonly used in literature. The
main limitations it poses are, its inability to take into
account sound reverberations due to possible obstacles,
the fact that sound sources may not be isotropic, and that

it assumes point sources. For a more detailed discussion
on acoustic energy decay models, the interested reader is
referred to [8,18].

Inspection of the model of Eq. (1) reveals that not all
sensor nodes experience the same signal to noise ratio.
Signal strength measurements at sensors that lie near a
source are much more “informative” than measurements
acquired at sensors away from all sources. Thus, it has
been proposed [8,29] that only sensor nodes of relatively
high signal-to-noise ratio should take part in the estima-
tion procedure. These nodes define the set of active nodes
which we denote as A. Usually, each node independently
decides if it belongs in A by testing if its measurement is
greater than a predefined threshold T, that is

A={n:y,>T}. )

However, in general, the decision about the state (active
or inactive) of a sensor node may also depend on
information available at other nodes. In such a case,
decision fusion techniques [30] may be applied.

3. Estimation techniques for multiple source localization
3.1. The ML estimator

In [23], the maximum likelihood estimator for multiple
source localization using energy measurements was
formulated. In particular, if we write the Ny =|A|
measurements of active nodes in (1) in vector form,
maximum likelihood estimation is equivalent to mini-
mizing the cost function

1(6) = lly — Hall, 3)

where y=[y; y2 --- yn,|" is the vector with the mea-
surements. Matrix H and vector a depend on the unknown
parameters vector 0 = [x]...x} A;...Ac]", via the rela-
tions

a=[A Ay --- A" and H=[hX) hx,) --- hXy)]
4
with

1 1 1
Iy —xI2 llry —x12 llry, — X112

hx) = (3)

Noting that vector a participates in (3) linearly, we can
replace it by its least squares estimate for given H, which
is given by

a, = H'H) 'H'y ©®)
so as to get the modified cost function
(X1, Xz,....X¢) = Iy — HH'H)'H'yI? @

which is equivalent to (3) in terms of their global
minimum. Minimization of (7) can be transformed into
an equivalent maximization problem:

H, = argmHinHy —HMH'H) 'HyI? = argmﬁixyTPHyT, 8

where Py =HMH) 'H" is a projection matrix that
projects vectors onto the column-space of H.
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As pointed out in [23,14], the cost function in (7) is a
non-convex function. Thus, its maximization requires a
multidimensional search: The space of possible source
locations R? (p € {2,3}) is made discrete by considering g?
points that form a hyper-cube with g points along each
dimension. Each one of the K sources is then assumed to
be located at one of these points, resulting in a total of gPK
possible cases. For each one of these cases, the corre-
sponding matrix Py must be computed so as to evaluate
the cost function in (8). In the case where two or more
sources are assumed to be located at the same grid point,
the number of columns of matrix H must be reduced
accordingly so as to match the number of non-collocated
sources, in order to ensure that matrix H'H is non-
singular. In [23], several alternative optimization methods
such as the multi-resolution (MR) search and the
expectation-maximization (EM) were also studied.

3.2. The AP estimator

The alternating projection is a conceptually simple
technique for multidimensional maximization. This techni-
que has been successfully used in the past for multiple
source localization using DOA measurements [27] and TDOA
measurements of wideband signals in the near field [28]. In
this subsection we adapt this approach to the case of
multiple source localization using RSS measurements. The
technique is iterative; at every iteration a maximization is
performed with respect to a single parameter while all the
other parameters remain fixed. In the case of multiple
source localization, at each iteration, the cost function is
optimized with respect to the location vector of a single
source while the location vectors of all the other sources
remain fixed. Thus, instead of gPK evaluations of the cost
function that are required for ML estimation, the alternating
projection approach requires KqP evaluations to estimate
the location of the K sources. Usually, the aforementioned
iterative procedure may be executed M times, in this case,
each source location estimate is “refined” while the
estimates of the remaining K — 1 sources remain equal to
their previous values and MKqP evaluations of the cost
function are required. Of course, similarly to the ML
estimation procedure, alternative optimization techniques
such as the multi-resolution search or the EM algorithm
may be used for the one-dimensional optimization steps of
the AP algorithm. Furthermore, the projection matrix update
formula [27] may be used to obtain a low-complexity
implementation, as will be described in the sequel.

Consider that after an initialization phase, we have
obtained the estimates of the source locations denoted as
X0 xD, %Y and we wish to update the location
estimate of the first source from x ) to x ). According to
the AP approach, we must maximize (8) under the
constraint that only the first column of matrix H, involved

in Py, is allowed to vary. Let us denote this matrix as
H = [h(x;) h&) - h&E)]. €)

The corresponding matrix that projects onto the columns
space of H{" will be given by

P =HPHTH)TH (10)

Now, the projection matrix update formula can be used to
avoid the matrix inversion required for the computation
of matrix P(ll). Let B and C be two arbitrary matrices with
the same number of rows, and let Pggc denote the
projection matrix onto the columns space of the augmen-
ted matrix [B|C]. According to the projection matrix
update formula, P c; can be expressed as the sum of the
projection matrix Pc and the projection matrix Pg., where
Bc denotes the residual of the columns of B when
projected on C:

P[B‘q =Pc+ PBC- (11)
Matrix B¢ can be written as
Bc = (I — Pc)B. (12)

Thus, matrix P(]” can be computed in K steps, where at
each one such step we consider a matrix augmented with
a column vector B = h(X;) from matrix H(l”. Since matrix B
is a vector, the required matrix Pg. can be computed
without the need to compute any matrix inversion. In
particular, we compute P(]” using a sequence of K+ 1
matrices P{"? = oy, PV, .., P{"® = PV by application
of the recursive formula

P(11.k+1> _ P(]”” " (In, — <1 k))hkh (In, — p(1 ) a3)
k(lNa —P{"hy

where h; denotes a column of matrix H{" and the
sequence of columns can be arbitrary. Now, considering
that the last update uses the first column of H{", we have
that

k-1, (v — P D)hexhex) Iy, — P ”)

PV =P}
! hxi) (Iy, — P D)hexy)

(14

If we substitute P{"’ from (14) in (8), we obtain two terms.
We notice that the first term, yTP(l K=y does not depend
on X;. Thus, we have that the maximization of (8) with
respect to x; (and keeping all the other source locations
constant) is equivalent to the following maximization:

1) ¥y, — P D)hxghx) (I, — Py
Xl = argmax TK-1 .
% hxy) Iy, — P ")hxy)

15)

In general, when the alternating projection is executed at
iteration m (m=1,2,...,M), the estimation of the loca-
tion vector of the k-th (k=1,2,...,K) source must be
selected as the vector that maximizes the function

ke = (h(xk)T(lNﬂ — P vy, - Pﬁj"*"‘”)h(x;»)

hxo)" Iy, — P D)hixy)

(16)
where P{™*"" is the projection matrix onto the column
space of matrlx
H(mK 1) [h(x(m)) h(x(m)) h(ﬁ;ﬂll)) h(x(m 1)]

17)

which has K — 1 columns, defined by the respective h(-)
vectors of the current estimates about the locations of the
remaining K — 1 sources.
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Fig. 1. (a) A plot of the function in (16), where there are 25 active nodes and 4 sources. The first three sources are at (20, 0), (0, 20), (—20, 0) and have been
estimated correctly, while the plot depicts the function that must be maximized for estimating the fourth source at (0, —20). (b) The respective plot for the

approximate function in (21).
3.3. Complexity analysis of the AP scheme

As it is clear from the previous, the update of a source
location from )"(;:"_1) to X" requires the construction of
matrix P{™" and the maximization of the respective
function in (16). The computation of P{"™*~" is performed
in K—1 steps, where at each such step the most
computationally demanding operation is a matrix-vector
product, hence, this computation requires O((K — 1)N2)
operations. On the other hand, maximization of (16) must
be performed using some search-based method. This is
due to the fact that this function is non-convex, as it is
demonstrated in Fig. 1. Each evaluation of (16) requires
O(N2) operations, for computing the matrix-vector
product (Iy, — P{™ " ")h(x,). Thus, the evaluation of (16)
at gP points would require O(gP - N2) operations. In total, M
iterations with K sources and the use of a grid of gP points
would require O(M - K((K — 1) + q?)N2) operations. Clearly,
the dominant part in the complexity of the method is due
to the maximization operation, since gP is typically much
greater than K — 1.

4. Low complexity approximate AP

4.1. Motivation

In the previous, it was shown that the alternating
projection method requires the maximization of functions
of the form in (16). Also, the complexity of evaluating
functions of this form was shown to be proportional to the
square of the number of nodes N, that participate in the
estimation. On the other hand, the function that must be
maximized for performing ML estimation in the single
source case is given by (8) as

hx)"yy"h(x)

Im(x) = h hx)

. (18)
where we have considered that H in (8) is equal to a
vector h(x). Clearly, the above function can be evaluated
using only O(N,) operations, since only vector-by-vector
multiplication is involved. This fact motivates us to
consider if it is possible to device a similar cost function

that could be used for performing the single-source
localization operations involved in the AP scheme. Such
an approach could reduce the overall complexity of the AP
method from OM - K((K — 1) +gP)N2) to OM - K((K —
1)NZ + gP- Np)). As an example, in a case where M = 6,K =
3 and N, = 10, this would reduce the complexity due to
evaluation of the function, from 1800 - g? to 180 - gP.

4.2. An approximation to the cost function

If we compare the function in (18) with the function in
(16), we notice that they have a similar form. In particular,

(1) The numerator in (16) can be written in the form of

the numerator in (18) by defining vector
y" = (I, — P{™D)y. Furthermore, it is easy to
(m.k)

verify that y."" represents a vector of “canceled”
measurements. This can be verified by considering
that

y(cm,k) = (- P;{m,K—U)y
—y— P;{m,l(—l )y
—y— H;{m,l(—l)(H;T,K—l)THim,K—l))—lH;‘)m,K—l)Ty

—1) 5, (mk
—y — H™MCDg o, (19)

where

&(m,k) _ (H;{m,K—l)TH;:n,K—l))_lH;{m,](—l)Ty (20)
represents the least squares estimate for the powers
of the remaining K — 1 sources, as it can be seen by
comparing it with Eq. (6). Thus, the product
H™D3™9 s an estimate of the energy measure-
ments that would be obtained in the case where only
the remaining K — 1 sources were present, and vector

y™b denotes the measurements after removal of their
contribution.

(2) The denominator in (16) is equal to the denominator
in (18) apart from the term h(x;)"P{"* " h(x,). Thus,
we conclude that this term represents a correction
due to “interference” caused by the presence of the
other K — 1 sources that cannot be taken into account
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by means of the canceled measurements y‘cm’k’.
However, when h(x,)"h(x;) is large as compared to
h(x,)"P{™"Vh(x,), then the last term should have
only a small contribution to the evaluation of (16).

Based upon the above discussion, we define the
function

hx) (Iy, — P V)yy" Iy, — P D)hex,)
I(Xk) = T
h(xy) h(xy)
@1

as an approximation of the function in (16), when
h(x;)"h(x,) is large as compared to h(x,) P{™* Vh(x,).
Thus, we suggest using a threshold 4, and test if

h(X;{m—l))TPLm,K—l )h(ﬁim—l))

<A, 22
h&" ") h&{" ") 22)

that is, test if I(x;) is a good approximation of the correct
function J(x;), close to the previous estimate X{"~". In this
case, I(x;) can be used in the optimization operation. Fig. 1
demonstrates that this function is also non-convex.
Considering that we need to evaluate (21) at gP points,
we can first compute the canceled measurements vector
y™ in N2 operations, and then use this vector to
maximize (21) by performing O(N, - g°) operations. Of
course, the overall complexity of the proposed AP-based
algorithm will depend on the outcome of the suggested
function-selection criterion. The parameter A, ranging
in the interval [0,1], can be used as a trade-off between
complexity and accuracy. The proposed AP-based
multiple source localization algorithm is summarized in
Table 1.

Since the examined algorithm is based upon the so-
called “deterministic hill climbing” method, its conver-
gence behavior is difficult to be analyzed. Furthermore,
one of the most important factors for convergence is the
selection of the initial estimates. In the next subsection
we propose an initialization method that, by means of
simulations, was found to lead to accurate initial
estimates of the locations of the sources.

4.3. Suggested initialization procedure

In the previous, we assumed that both the exact AP
and the low-complexity approximate AP-based algo-
rithms were supplied with initial estimates x'”,
P, xQ of the locations of the sources. If we adopt
the method proposed in [27] into our case, we arrive at
the algorithm of Table 2. In this paragraph, we propose a
two-stage multi-resolution method for performing the
function maximization operations that appear in Table 2.

At the first stage of the multi-resolution search, we
propose to use a coarse grid that coincides with the
locations of active sensors. Using this approach, we have

that vector h(r;)/lIh(r;)Il will be equal to the i-th vector of

Table 1
The proposed approximate AP-based multiple source localization
algorithm.

INPUT: Initial location estimates X”, X%, ..., X\, measurements y

OUTPUT: Final location estimates after M iterations:

M xM W

FORm=1TO M
FOR k=1 TO K

Py"” =0y,
FORi=1TO k-1
P;(m.i) — P;{m,ifl) +
END
FORi=k+1TOK

. - I —
P;{m,l 1) — P;(m.x 2) +(Na

(I, —P" D) & ™ )hE ™) Iy, 7P1(m.171))
hE™) Iy, 7P4‘{n1..71;)hlx:m»)

P zy)h(ﬁ:mfh)h(*:m—ll)l(INa —p 2)
h(i:mfl (I, 71):(m.vfh)h()~(:m—h)

END
RE! )T PK=D g D)
IF 2%« k |
hE ) ThE )

hox) A =Py —P‘km-“*vh(xn)

<4,

2 (M)
X, = argrr}(:;ax(

h(x) hx)

ELSE
o (m) hexe)” (I —P™ D)y, —P)hixi)
X, = argmax
K gma ( hx)" Iy, —P,™")hox)

END

END
END
Table 2

Initialization phase of the EB-AP-MSL algorithm.

INPUT: Measurements y

OUTPUT: Initial location estimates x”, %%, ... %\

PP =0y,
FORk=1TOK -1

29 — argmax (hnxkﬂum, —PO)yy (y, —P‘f')h(xﬂ)
o _
Xy

h(x) (I, ~P)h(xe)
© _ pO , (n PR &) Ay, —P)
P =P+ hE) (g PR

END

2 (0) h(xio)" (g —P )Yy (I, —Pi)hxe)
X = argmax
K B ( hox)" Iy, —PR)hGxc)

the N,- dimensional canonical basis, that is

he) r
Ty~ ¢ =100 .- 0100 - OF. (23)

i—1 zeros

Nq—i zeros
Thus, the problem that must be solved can be written as

a0, — Py, — PN
T i hox)"(y, — P)h(xy)

24

and its solution involves computation of the vector
Iy, — Py, squaring each element, division of each
element by the respective diagonal element of matrix
Iy, — P, and finally selection of the maximum value.
Thus, this optimization step can be performed in O(N2)
operations.

For the second stage of the multi-resolution search, a
finer grid must be constructed close to the location of the
node that was selected at the previous stage. Thus, a
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problem that we must also investigate has to do with the
size of the grid. To this end, we view the estimate of the
previous stage of the search as being an approximation of
the closest point of approach (CPA) node, for the k-th
source that we wish to estimate. This interpretation will
help us select a proper size for the fine search grid. In
addition, in the following we adopt a stochastic model for
the locations of the nodes of the sensor network, and in
particular we assume that their locations can be assumed
random and uniformly distributed over the region of
interest.

In the following, we will derive the expected distance
between a source and its CPA node, in the two dimen-
sional and three dimensional cases. Let us consider that n
sensor nodes are uniformly deployed over a region of area
E. We may define the spatial density of such a network as
d = n/E. Consider also that a source is placed in the same
region, and define a circular area R of radius p around that
source. Define also the random variable Y,p denoting the
distance between the source and the closest sensor node.
Then, it follows that the probability that the closest sensor
node lies in R is given by

Pr{Y,p < p} = Pr{(number of nodes in R)>1}
=1 — Pr{(number of nodes in R) = 0}

1 n
=1- (1 — ndp? ﬁ) . (25)
Thus, as n and E = n/d tend to infinity, we have that

Pr{Yop<p} =1 — e ™0, (26)

Differentiating the above cumulative density with respect
to p, we get the probability density function of Y,p as

frn(p) = 2mdpe=™". 27

The expected value of Y,p, which is the expected distance
of the source from its CPA node, is thus found to be

+oo 1
o =EYaol = | - (p)dp = . 28)

Using similar reasoning for the three dimensional case
and defining the random variable Ys;p to represent the
distance between the source and the closest node, we
have that

n
Pr{Ys;p<p}=1— <1 —%nd;ﬁ%) , (29)
and the respective probability density function becomes
fY ( ):47'Cd Ze—(4/3)7tdp3. (30)
3D p p

Finally, the expected value of the distance becomes
ra/3)

~+00
—ElYanl = [ p-fun(p)dp = . 31
H3p [ 3D] o P fY3D(p) P m ( )
Thus, taking into account that the estimates x| " can be

interpreted as the CPA nodes, we propose to consider a
rectangular region of size 4u,, x 4u,p for p=2, and a
region of size 43 x 415p x 4 for p = 3. Within these
regions, we must construct a g x q grid or a g x q x q grid
of points, respectively, centered at the location D The
probability that the source is located within a circle
(respectively, sphere), of radius 2u,, (respectively, 2u;p)

centered at the actual CPA node, is independent of the
density d of the network, and was evaluated to be equal to
0.95 (respectively, 0.99). In the case where the assump-
tion of uniform deployment does not hold, or the density
of the network is not known, then a “local” estimate of the
density can be obtained by considering a number of nodes
in the vicinity of X\ " as well as the area or volume they
occupy. Such an approach requires the assumption of
uniform deployment to hold only locally.

4.4. Distributed implementation issues

The localization method proposed in the previous can
easily be implemented in a centralized fashion. In
particular, the information that must be transmitted to a
node, so-called fusion-center, comprises of the measure-
ments and locations of active nodes, giving a total of (p +
1)-N; real numbers, assuming that each node can
communicate with the fusion-center directly. On the
other hand, in a distributed implementation of the
algorithm the following facts may be taken into account:

(1) From the previous section, we have that the projec-
tion matrices involved in the localization algorithm
depend on the locations of active sensor nodes and
the current source location estimates. Thus, this
information must be available at a sensor node, so
that a local copy of the associated projection matrix
can be computed. To this end, at the end of every
location-update step, the derived estimate must be
transmitted to all active nodes. This requires a total of
(M+1)-K-p-(Ng — 1) real numbers. We may exclude
the transmission of the location vectors of the active
nodes, assuming that they have been transmitted
during an initialization phase and they remain the
same (i.e. the nodes do not move).

Of course, the most demanding operation that must
be implemented has to do with the evaluation of the
cost function. For this task, we first note that if all
active nodes know the current locations of the
sources, then each node can generate a local copy of
the search grid, according to a predefined rule. Thus,
each node can generate the required vector h(x) for a
test point x of the grid. In the sequel, the active nodes
must cooperate to compute a term of the form
y'(I — P)h(x). To this end, each node i must compute
the i-th element v; of the vector (I - P)h(x), and
multiply it with the local measurement y;. Then, the
sum of the products v; - y; must be computed. This will
require the transmission of N; —1 real numbers,
assuming that N; — 1 nodes send their contribution
to some “leader node”, for example the node esti-
mated as the closest point of approach for each
source. Finally, this leader node will compute the sum
of the contributions, square it, and divide the result by
either h'x)I—P)hx) or h'x)hx), according to
whether the exact or the approximate cost function
is used. In total, evaluation of the cost functions will
require the transmission of (M +1)-K-qP-(Ng—1)
real numbers.

(2

~—
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As it becomes clear from the above, the examined
distributed implementation requires much more commu-
nication as compared to the centralized one. Thus, we
draw the conclusion that it is preferred to implement the
proposed localization algorithms in a centralized fashion.

5. Simulation results

In order to evaluate the performance of the proposed
localization algorithms, we conducted some typical
numerical simulations. In the following subsections, we
present the results of these experiments categorized as
follows: (a) In Section 5.1, we compare the performance of
the AP-based algorithms with that of the ML estimator, in
a scenario where two sources must be localized. (b) The
performance of the AP-based algorithms in localizing
three equidistant sources is demonstrated in Section 5.2.
(c) The performance of the proposed algorithms, under
various perturbations in the model, is studied in Section
5.3.

In a localization problem involving multiple sources,
there are K- (p + 1) unknowns, namely the coordinates
and powers of the K sources. Thus, the number of active
sensors should at least be equal to that number. As an
example, for K = 2 sources in a two dimensional scenario,
this number is equal to 6. Thus, in the experiments
presented in the following, we have included only
instances of the localization problem in which a minimum
number of active nodes exists.

Also, the problem of data association [1] must be taken
into account. In our setting, the problem is to associate the
K location estimates of the localization algorithm, with
the actual locations of the K sources, in order to measure
the respective location errors. In all the following
experiments, data association is performed by computing
all possible K! possible associations, and choosing the one
that results in the smallest sum of square errors.
Furthermore, after data association, we propose to
differentiate the sources in the sense that we number
them according to their respective location error, i.e. the
source estimated with the smallest error is considered as
the first one and so on. As it will become more clear in the
following, such a sorting of the estimated sources allows
us to better interpret the performance characteristics of
multiple source localization algorithms.

5.1. Localization performance for two sources

In order to compare the performance of the proposed
algorithm to that of the ML estimator, we simulated
several realizations of the multiple source localization
problem. At each instance, N = 500 sensor nodes were
uniformly deployed over a p =2 dimensional 100 x
100m? field. In the same field two sources of equal
strength A; = A, = 100 were also placed. In particular, in
order to avoid boundary effects (i.e. instances where the
sources lie close to the boundaries of the sensor field), we
uniformly placed the first source at X; in the central 50 x
50m? field, and the second source was placed at
X; = X1 — 0Xq/IIXqll, so that both sources always lie in

the central 50 x 50 field if their distance ¢ is smaller than
25m (the origin point (0,0) was the center of the square
field). The measurements of the sensors were generated
according to the model of Eq. (1), the variance of the noise
was set to 62 = 1, and active nodes were detected using a
threshold T = 5. To avoid ill-conditioned realizations, only
the realizations that resulted in N,>9 nodes were
simulated. In order to test how the examined algorithms
perform with respect to the distance between the two
sources, we varied ¢ from 2.5 to 25 m with a step size of
2.5 m. For each case, we simulated 2000 realizations of the
multiple source localization problem and computed the
respective average errors.

For the AP and the low-complexity AP-based algo-
rithms, we performed seven iterations (i.e. M = 6), using
the initialization procedure of Section 4.3. At the initi-
alization (M = 0), a square 31 x 31 (g = 31) grid was used,
extended to an area 4/(2+/d) x 4/(2+/d)m? as suggested in
Section 4.3, where the network density is
d =500/(100 x 100). At the following iterations (m>0),
we also used 31x31 square grids, measuring
1/2™1Vd) x 1/2™'v/d) m. The centers of these grids
were the source location estimates of the previous
iteration.

For the ML estimator, we used the multi-resolution
[23] approach with the same size grids (size of region and
number of points) as for the AP-based algorithms and also
seven iterations. In order to reduce experimentation time
for the computationally demanding ML estimator, the
centers of the initial grids were placed at the correct
closest point of approach nodes of each source, assuming
that a very detailed initial search procedure would
eventually detect these regions.

In Figs. 2(a) and (b) the root mean square (RMS) and
root median square errors of the examined algorithms are
given, respectively, as a function of the distance ¢
between the two sources. From these figures, we note
that the proposed low-complexity AP-based algorithm
with 4 =0.05 obtains very similar performance to the
exact AP implementation. In terms of root median square
error, a performance difference is evident only in the
interval from 5 to 12.5m, where the exact
implementation performs better by at most 0.2 m. Also,
the AP-based algorithms obtain a root median square
error that is comparable to that of the ML estimator,
especially when 6>15m where the ML estimate is at
most 0.1 m better.

In Fig. 2(c) we demonstrate the root median square
error for the low-complexity AP-based algorithm and
three different values for /. Also, in Fig. 2(d), the respective
percentages of choosing the approximate functions for
maximization are presented. From these figures, the trade-
off between performance and complexity is presented:
Choosing a value for A close to zero, results in a
performance close to that of the exact implementation,
but this results in a reduction of the percentage of
choosing the approximate functions. However, for
d>15m, even the value of 2 = 0.95 results in performance
equivalent to that of the exact implementation.

In Fig. 2(e), we demonstrate the average numbers of
active nodes for the simulated realizations. In total, 11.3
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nodes were on average active, 6.4 of which were closer to
the better estimated source and 4.9 closer to the second
source. The fact that the number of active nodes closer to
the second source is small, results in an RMS error for the
second source that increases for 6>12.5, as shown in
Fig. 2(a). In particular, while for 6 <12.5 m all active nodes
are close enough to both sources, as the distance between
the sources increases, fewer active sensors are close to the
second source, and thus ill-conditioned instances with
less than 4 active nodes close to the second source
become more probable. The root median square error
depicted in Figs. 2(b) and (c) “filters” effectively these ill-
conditioned realizations.

In Fig. 3, the root median square error of the AP-based
algorithms is presented, as a function of the iteration m.
We focus on the four cases 6 =5m and N = 500 nodes,
0 =10m and N = 500 nodes, 6 = 5m and N = 1000 nodes
and 6 = 10m and N = 1000 nodes. From these figures we
note that (a) a large value of 4 may cause the algorithm to
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be trapped at some local maximum, (b) as the network
density increases or the distance between the sources is
increased, the performance gap between the ML and the
AP-based algorithms becomes smaller, and (c) when the
distance between the sources is large enough, even a large
value for A results in a performance very close to that of
the exact AP scheme. The complexity gains, in terms of
the percentages of times that the approximate functions
were selected, appear in Table 3.

5.2. Localization performance for three sources

In this paragraph, we explore the performance of the
proposed algorithm in localizing three sources. In parti-
cular, N = 1000 sensor nodes were uniformly deployed
over a p = 2 dimensional 100 x 100 m? field. In the same
field three sources of equal strength A; = A, = A3 =100
were also placed on the vertices of an equilateral triangle
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Fig. 3. Root median square error as a function of the iteration number (a) = 5m and density d = 0.05, (b) 6 = 10m and density d = 0.05, (c) § = 5m and

density d = 0.1, (d) 6 = 10m and density d = 0.1.



1310

centered at the origin point (0, 0). All other parameters of
the proposed algorithm are the same as those explained in
the previous subsection. The distance § between the
sources was varied from 2.5 to 25 m in 2.5 m increments.
For each §, we simulated 2000 instances of the localiza-
tion problem. In order to avoid ill conditioned instances,
only those realizations of the problem that resulted in

Table 3
Percentages of times that the approximate functions were selected, for
the cases in Fig. 3.

N = 500 nodes (%) N = 1000 nodes (%)

d=5m d=10m d=5m d=10m
A =0.01 10.87 43.96 16.36 58.03
=01 53.05 88.37 64.96 94.36
=02 69.07 93.36 79.12 96.40
=03 77.45 95.19 86.48 96.56
a
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more than 14 active nodes were simulated. In Fig. 4 we
demonstrate the resulting RMS and root median square
errors for the locations of the three sources as well as the
percentage of times that the low-complexity AP-based
algorithm selected the approximate functions for 4 = 0.1.
These figures show the effectiveness of the proposed
method for multiple source localization. In particular, the
approximate scheme offers equivalent performance to the
exact implementation, at a reduced computational
complexity, as it can be seen from Fig. 4(c).

5.3. Robustness to model perturbations

In this paragraph, we repeat the experiment of Section
5.1, but we now study the impact of possible inaccuracies
in the model of Eq. (1). In particular, we study the case
where the locations of the sensors are not known exactly,
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but rather, each coordinate contains uniform error, and
the case where the sensors are not well calibrated.

In Figs. 5(a) and (b), we demonstrate the root median
square errors for the exact and approximate schemes,
respectively, in the case where the coordinates of the
sensors are perturbed by adding noise uniformly
distributed in the interval (-0.5,+0.5) meters. From
these figures we note that there is a significant
performance degradation due the erroneous estimates of
the locations of the sensors. However, the exact and the
approximate schemes are equally affected by this
inaccuracy.

In Figs. 5(c) and (d), we demonstrate the root median
square errors for the exact and approximate schemes,
respectively, in the case where the sensors are not well
calibrated. In particular, each sensor i experiences a gain
g; which is modeled as a uniform random variable in the
interval (0.8,1.2). From these figures, we note that the
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examined gain perturbation leads to similar conclusions
as the sensor locations perturbations.

6. Concluding remarks

In this work, the problem of localizing multiple
acoustic sources using energy measurements from dis-
tributed sensors was considered. An alternating projec-
tion approach was formulated that exhibits lower
computational complexity as compared to the maximum
likelihood estimator. Furthermore, an efficient approxi-
mate scheme with lower computational complexity was
proposed. Also, a computationally efficient initialization
procedure was examined. Simulation results verified that
the proposed localization method exhibits a performance
close to the performance of the exact alternating projec-
tion algorithm, at a significantly lower computational
complexity.
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Fig. 5. (a) Root median square localization error under inaccurate sensor locations for the exact AP, (b) root median square localization error under
inaccurate sensor locations for the low-complexity AP-based scheme, (c) root median square localization error under inaccurate sensor gains for the exact
scheme, (d) root median square localization error under inaccurate sensor gains for the low-complexity AP-based scheme.
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