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Abstract—In this paper, the parameter estimation problem
based on diffusion least mean squares strategies is analyzed
from a coalitional game theoretical perspective. Specifically, while
selfishly minimizing only their own mean-square costs, the nodes
in a network form coalitions that benefit them. Due to its nature,
the problem is modeled as a non-transferable game and two
scenarios are studied, one where each node’s payoff includes only
a suitable estimation accuracy criterion and another one in which
a graph-based communication cost is also considered. In the
former scenario, we first analyze the non-emptiness of the core of
the games corresponding to traditional diffusion strategies, and
then, the analysis is extended to a recently proposed node-specific
parameter estimation setting where the nodes have overlapped
but different estimation interests. In the latter scenario, after
formulating a coalitional graph game and providing sufficient
conditions for its core non-emptiness, we propose a distributed
graph formation algorithm, based on merge-and-split approach,
which converges to a stable coalition structure.

Index Terms—Adaptive distributed networks, diffusion, LMS,
cooperation, node-specific parameter estimation, coalitional game
theory, NTU game, core, graph game.

I. INTRODUCTION

Several distributed least mean squares (LMS) algorithms for
adaptive parameter estimation over networks were developed
in the literature, namely, the consensus, the incremental and
the diffusion strategy (see [2]-[7] and references therein).
Until recently, the mainstream of existing research in adaptive
networks focused on considering that the nodes’ interests
are absolutely identical, which we refer to as the traditional
setting. Presently, research efforts have focused on removing
this restriction. For instance, the Node-Specific Parameter Esti-
mation (NSPE) formulation has been introduced and analyzed
in [8]-[11], where the nodes are considered to have overlapped
but generally different estimation interests. Another useful
approach was provided in [12], in which the proposed algo-
rithm deals with the scenario where nodes have numerically
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similar estimation interests. Also, for the same scenario as
in [12], the performance of the diffusion strategy, designed
for the traditional setting, has been analyzed in [13]. The
main advantage of these approaches with respect to the non-
cooperative ones is in an improved estimation accuracy due to
a proper cooperation mechanism among nodes. However, the
cooperation benefits are usually analyzed from a network-wide
perspective. In other words, cooperation is shown to improve
the estimation performance metrics averaged over the whole
network. Therefore, it remains unclear whether each node in
the network benefits from cooperation, or whether the nodes
could be organized in certain groups/subnetworks so as to
benefit more. In this work, we aim to answer these questions
for the NSPE scenario by allowing nodes or groups of nodes
to be selfish using concepts from coalitional game theory.

A. Game Theory in brief

In general, game theory can be defined as the study of
mathematical models related to rational decision-makers in
situations involving conflicts of interest and cooperation. Over
the last decades, there has been a dramatic growth in both the
number of theoretical results and the variety of applications in
disciplines such as economics, political sciences, philosophy
and more recently, engineering [14],[15]. In contrast to non-
cooperative game theory, where the modeling unit is a single
player, coalitional game theory, being the focus of this paper,
seeks for an optimal coalition structure of players so as
to maximize the worth of each coalition. In other words,
a coalitional game is differentiated from a non-cooperative
game primarily by its focus on what groups of players can
achieve together rather than on what individual players can
do alone [16]. In accordance with [17], coalitional games can
be classified into the following three categories, i.e., canonical
coalitional games, coalition formation games and coalitional
graph games. The main task in a canonical game is to study
stability of the coalition of all players in the game, while in a
coalition formation game, one usually analyzes the formation
of a stable coalitional structure by also taking cooperation
cost into account. In a coalitional graph game, the value of
a coalition depends both on the members of the coalition
and on the interconnections between them. Also, coalitional
games are divided into Transferable Utility (TU) games and
Non-Transferable Utility (NTU) games. In the former ones,
each group of players is associated with a single number,
interpreted as the payoff that is given to the group and that
may be distributed in any way among the group members. The
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latter represent a more general concept, and NTU games are
sometimes referred to as games without side payments [18].
In these games, each coalition cannot necessarily achieve all
distributions of some fixed payoff, so that the value of a
coalition is a set of payoff vectors used to assign each member
of the coalition its own utility [19].

B. Game Theory for adaptive networks

First of all, we should highlight that all game theoretical ref-
erences addressing the problem of adaptive networks consider
the traditional setting only, in which all nodes aim to estimate
a set of parameters that are identical to all nodes. Also, most
of these references focus on non-cooperative games, where
the main solution concept is the celebrated Nash equilibrium
(NE). Due to the lack of coordination among the players, the
NE can be rather inefficient, so the main question is how to
improve the players’ payoffs. A way to accomplish this can
be through a reputation design strategy, which was employed
in [20] to enforce cooperation between rationally selfish nodes
in a pairwise one-shot successive game scenario. For the
same scenario, an approximative cluster formation protocol
was provided in [21], in which the nodes pairwisely choose
whether to merge based on the estimation accuracy gain and
the inherent communication cost. Another approach to im-
prove the players’ payoffs with respect to the ones guaranteed
by the Nash equilibrium is correlating the players’ choices
through some signaling mechanism. This approach has been
considered in [22] to tackle the problem of node activation
control. Next, in [23], the distributed adaptive filtering problem
was addressed using a game-theoretical model inspired by
evolutionary biology, i.e., a graphical evolutionary game. More
precisely, it was proved that the strategy of using information
from nodes with good signal is always an evolutionarily stable
strategy.

C. Paper contributions and organization

In this paper, we analyze the distributed adaptive parameter
estimation problem using the tools from coalitional game
theory. The problem is modeled as a coalitional game with
non-transferable utility for which the choice of coalitional
actions defines the payoff attainable to each player. The main
contributions of this article are listed in the following: 1) the
traditional diffusion setting has been analyzed from a coalition
game-theoretic perspective, 2) the analysis has been extended
to the NSPE setting game, and 3) the NSPE setting has been
analyzed as a coalitional graph game.

The structure of the paper is as follows. Section II starts with
a brief presentation of the NSPE formulation and the diffusion
strategies for both settings, the traditional one and the more
general, NSPE setting; then, the distributed adaptive parameter
estimation problem with self-interested agents, being in the
focus of this paper, is motivated. In Section III, we analyze
the aforementioned problem for a scenario where the nodes’
payoffs are modeled exclusively using a suitable estimation
accuracy criterion. The stability of the coalition of all nodes is
studied in games modeling both the traditional and the NSPE
setting. Next, Section IV is devoted to the graph games so as
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Fig. 1. An illustrative example of an NSPE network with two overlapping
phenomena, denoted by ςoa and ςob , and with their influence areas given by
Pa = {1, . . . , 7} and Pb = {5, . . . , 10}.

to model the problem in question. The nodes’ payoffs are now
defined as graph-based functions that also take the cooperation
cost into account. In Section V, the main findings are verified
via computer simulations. Finally, Section VI summarizes the
work.

D. Notation

The following notation is used throughout the paper. We
use boldface letters for random variables and normal fonts
for deterministic quantities. We use the weighted (semi)norm
notation ‖x‖2Σ , xHΣx with a vector x and a Hermitian pos-
itive (semi-)definite matrix Σ. Furthermore, Ra = E{aHa}
for a random vector a. The notation diag{·} denotes a block-
diagonal matrix with arguments on block-diagonal. Addition-
ally, the notation col{·} denotes a column operator stacking
arguments on top of each other. Note that 1L stands for
an L × 1 vector of ones. Also, let R denote the set of all
real numbers. R|N | is the |N |-dimensional Euclidean space
generated by a finite set of players N . An element of R|N |
is denoted by a vector x = (xk)k∈N . For a coalition S ⊆ N ,
let xS = (xk)k∈S denote the restriction of x on S. For
x, y ∈ R|N |, yS ≥ xS denotes yk ≥ xk for all k ∈ S with at
least one element satisfying the strict inequality. The symbol
× denotes the Cartesian product.

II. NODE-SPECIFIC PARAMETER ESTIMATION- OVERVIEW

In this section, we initially summarize the NSPE formu-
lation proposed in [8]-[11], and then, the diffusion adaptive
strategy in both the NSPE and the traditional setting is
provided. Finally, the main questions considered in this paper
are posed.

Assume a network of N randomly deployed nodes affected
by some phenomena in a different way. For instance, Figure 1
shows two such phenomena, being modeled with unknown
deterministic vectors ςoa and ςob . Nodes that are influenced
by each phenomenon are assumed inter-connected via some
topology. The neighborhood of any particular node k, together
with node k, is denoted as Nk.

Each node k, at discrete time i, has access to data
{dk(i), uk,i} which are time realizations of zero-mean random
processes dk(i) ∈ C and uk,i ∈ C1×Mk , which are related via
the linear model

dk(i) = uk,iw
o
k + vk(i). (1)
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where

- wok is the deterministic vector of size Mk that models all
phenomena node k is influenced by, and

- the term vk(i) ∈ C denotes a zero-mean white noise, of
variance σ2

v,k, that is independent of all other variables.

In [8]-[11], nodes willingly cooperate to estimate in a dis-
tributed manner the parameter vectors {wok}Nk=1 that minimize
the network-wide mean-square error cost, namely,

minimize
{wk}Nk=1

N∑
k=1

Jk(wk) ,
N∑
k=1

E
{
|dk(i)− uk,iwk|2

}
. (2)

Note that vectors {wok}Nk=1, i.e., the minimizers of individual
costs {Jk(wk)}Nk=1, are different in general, yet overlapping.
As an example, consider a simple, NSPE setting where there
are only two, partially overlapping events (ςoa and ςob ) in the
network, as illustrated in Fig. 1. In this setting, there are some
nodes influenced by one of the two events as well as other
nodes affected by both events, i.e., by their superposition. The
subset of nodes affected by ςoa is denoted by Pa while Pb
stands for the subset of nodes interested in estimating ςob .

For a more general NSPE setting, where there are J
phenomena ςo1 . . . ς

o
J , the observation model from (1), at each

node k, can be rewritten as

dk(i) =
∑
j∈Ik

u
(j)
k,iς

o
j + vk,i (3)

where

- u
(j)
k,i is a row vector, of size 1 ×Mς,j , corresponding to
ςoj , and

- Ik ⊆ {1, . . . , J} represents a finite set of indices j related
to the vectors ςoj that are affecting node k. For instance,
in Fig. 1, the set of indices related to the phenomena node
6 is influenced by is I6 = {a, b}.

Now, let φ(i−1)
k,ςj

represent the estimate of ςoj at node k and
time instant i− 1, and let us also define the quantity that
stacks the estimates with φ(i−1)

k,ς = col
{{
φ

(i−1)
k,ςj

}
j∈Ik

}
. For a

suitably chosen step size µk, a distributed strategy based on
diffusion adaptation for the considered NSPE scenario involves
two steps [11], i.e., adapting the estimate φ(i−1)

k,ς based on new
data

ς
(i)
k = φ

(i−1)
k,ς + µk u

H
k,i

dk(i)−
∑
j∈Ik

u
(j)
k,iφ

(i−1)
k,ςj

 , (4)

followed by the combination step, for each j ∈ Ik, namely,

φ
(i)
k,ςj

=
∑

`∈Nk∩Pj

c
ςj
k,` ς

(i)
`,j . (5)

In relations above, ς(i)k,j stands for the estimate of ςoj at
node k and time instant i after the adaptation while ς

(i)
k =

col
{{
ς
(i)
k,j

}
j∈Ik

}
. The non-negative coefficient c

ςj
k,` is the

(k, `)-th entry of a |Pj | × |Pj | row-stochastic combination
matrix Cςj , satisfying

∑
`∈Nk∩Pj

c
ςj
k,` = 1.

To assess the mean-square estimation performance of an
adaptive algorithm, one may use the mean-square deviation

(MSD) criterion evaluated in the steady-state, defined below

MSD
(∞)
k = lim

i→∞
E‖wok − φ

(i)
k,ς‖2. (6)

In a more general case, in addition to the estimation per-
formance criterion, it can be considered that communication
between the nodes has non-negligible cost, so that each node
k aims to minimize

MSD
(∞)
k + ηk, (7)

where ηk is some normalized communication cost incurred by
node k. This scenario will be analyzed in Section IV, while in
the following section we will focus on the setting where the
cost is negligible. To that aim, we will first analyze traditional
diffusion [4]-[7]), which can be seen a special of the NSPE
setting. Specifically, in the traditional diffusion setting wok =
wo for all k ∈ {1, 2, . . . , N} in the observation model in (1). In
the context of the scenario depicted in Fig. 1, this could happen
if both events affected all the nodes, i.e., |Pa| = |Pb| = N and
wo = col

{{
ςoj
}
j∈{a,b}

}
. Then, relations (4) and (5) reduce to

the traditional diffusion strategy:

ψ
(i)
k = φ

(i−1)
k + µk u

H
k,i

[
dk(i)− uk,iφ(i−1)

k

]
(8)

φ
(i)
k =

∑
`∈Nk

ck,` ψ
(i)
` (9)

where ψ(i)
k and φ(i)

k are the estimates of wo at node k at time
i after the adaptation and the combination step, respectively,
while the non-negative coefficient ck,` is the (k, `)-th entry of
an N ×N row-stochastic combination matrix C. It should be
highlighted that the combination rule has a strong impact on
the performance of a diffusion algorithm (in both the NSPE
and the traditional setting). Either fixed or adapted over time,
there are several combination rules that can be chosen. For
instance, the Hastings rule is given as

ck,l =


σ2
v,k

max{nk·σ2
v,k,nl·σ2

v,l}
l ∈ Nk \ {k}

1−∑m∈Nk\{k} ck,m l = k
(10)

where nk is the number of neighbors of node k including the
node k itself, i.e., nk = |Nk|. In contrast to (10), there are
rules that satisfy CT 1N = 1N (e.g., Metropolis rule, Laplacian
rule etc.), and they are called doubly-stochastic rules.

Now, once the traditional and the NSPE diffusion settings
have been reviewed, the main contributions of our work are
listed and explained in more detail:
• The traditional diffusion setting is analyzed from a coali-

tion game-theoretic perspective. Although some useful
discussion related to the cooperation benefits in a tra-
ditional diffusion setting appears in the literature [7],
as well as some rather relevant works based on non-
cooperative game theory [20]-[21], this work (together
with its earlier version in [1]) is the first to analyze
the problem using the solution concepts from coalitional
game theory. Note that this stands in sharp contrast to the
aforementioned literature where only single nodes, and
not groups of nodes, are allowed to be rationally selfish.
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• The analysis is generalized to the NSPE setting game.
A natural question is whether the coalitional stability of
a single-interest network (traditional diffusion) is related
to the coalitional stability in the NSPE setting. Under
certain conditions, we show that the grand coalition with
respect to the whole NSPE network is coalitionally stable
iff all grand coalitions with respect to each interest ςoj
considered separately (as in a traditional diffusion setting)
are stable.

• The NSPE setting is analyzed as a coalitional graph
game. In contrast to our preliminary work [1], where
communication topology is a fully connected graph, in
Section IV we allow for more general graph structures
to model communication costs among the nodes in the
network. To that aim, we redefine a solution concept
with respect to the NSPE grand coalition, and based on
it, we provide sufficient conditions satisfying it. Finally,
for a general communication cost setting, we propose a
coalition graph formation game.

III. CANONICAL GAMES FOR PARAMETER ESTIMATION

In this section, the distributed adaptive parameter estimation
problem is analyzed for a scenario where the players’ payoffs
are modeled exclusively using a suitable estimation accuracy
criterion, namely, MSD. The nodes of the network represent
the players in the game and we define several games for both
settings, the traditional one and the NSPE setting. The main
focus is to study whether and under which conditions the
selfish players will form the grand coalition, i.e., the case
where all the nodes of the network cooperate via diffusion
strategy through a connected network topology. In all these
games, we employ the so-called core [18], [19], a classical
solution concept of coalitional game theory. Initially, we argue
under which conditions the grand coalition in the traditional
setting is stable. Finally, we generalize these findings for the
NSPE case by properly decomposing the underlying game.

A. Data assumptions

In order to convey the main ideas of this work, certain as-
sumptions on the data in (1) and (3) are adopted. Specifically,
for the traditional setting, the following, common to relevant
literature [7], assumptions are made,
A1) the regressors uk,i ∈ C1×M are temporally white and

spatially independent with the autocovariance Ruk
=

Ru > 0 being equal for all nodes,
A2) vk(i) ∈ C is temporally and spatially white noise, of

variance σ2
vk

, which is independent of u`,j for all k, i, `, j,
A3) the step sizes µk = µ, for all nodes, and are sufficiently

small so that the higher-order terms of µ can be ignored.
In case of the NSPE scenario, we further assume that
A4) the regressors u

(j)
k,i ∈ C1×Mς,j and u

(j′)
k,i ∈ C1×Mς,j′ are

independent for any j, j′ ∈ {1, . . . , J} and j 6= j′.

B. MSD game definition

Let us define an NTU coalitional game (N , υ), where
- N = {1, . . . , N} is the set of players (nodes) while

- υ(S) ⊆ RN is the set of payoff vectors1 of a coalition
S ⊆ N , which are related to the estimation accuracy that
the players in a coalition S may achieve.

In particular, if a payoff xk(S) denotes the kth element of
payoff vector x ∈ υ(S), then a payoff xk(S) that represents
the maximum estimation accuracy a certain node k ∈ S can
obtain is given by

xk(S) = −MSDk(S) = − lim
i→∞

E‖wo − φ
(i)
k (S)‖2. (11)

Note that in (11), φ(i)
k (S) denotes an estimate of an M × 1

vector wo that a node k may achieve while cooperating via
diffusion strategy of (8) and (9), directly or indirectly, with the
nodes that also belong to the same network subset S ⊆ N . In
other words, coalition S can be seen as a connected component
of the network N to which node k belongs. Such a coalition
definition is necessary due to the fact that the estimate of
node k is not only influenced by the estimates of its neighbors
in Nk but also by the estimates of other nodes to which its
neighbors are connected. In contrast to MSD definition in (6),
we emphasize now its dependence on S, while we drop the
time index i for notational simplicity. Naturally, each node is
rationally selfish in the sense that it aims to maximize its own
payoff.

C. MSD game analysis

In the sequel we will give a number of definitions from
the literature, so as to analyze the MSD game defined in the
previous subsection. Firstly, based on [17], we provide the
formal definition of a canonical game.

Definition 1. [17] An NTU game (N , υ) is canonical2 if
• it is in characteristic form, i.e., the following standard

conditions should hold:
(i) The value υ(S) must be a non-empty closed subset

of RN ,
(ii) The value υ(S) must be comprehensive, i.e., if x ∈

υ(S) and y ∈ RN are such that yk ≤ xk ∀k ∈ S,
then y ∈ υ(S),

(iii) The set {x | x ∈ υ(S) andxk ≥ zk,∀k ∈ S} with
zk = max{yk | y ∈ υ({k})} <∞, ∀k ∈ N must be
a bounded subset of RN ,

• it possesses the superadditivity property, i.e.,

υ(S1)∩ υ(S2) ⊆ υ(S1 ∪ S2),

∀S1 ⊂ N , S2 ⊂ N , s.t.S1 ∩ S2 = ∅. (12)

For a game in characteristic form, the value of a coalition
S is determined exclusively by the members of that coalition.
Intuitively, the superadditivity property means that if a certain
outcome can be attained by the disjoint coalitions S1 and S2

when acting separately, then it can also be attained by them
when acting in concert. Therefore, it is reasonable to study the

1Note that, in the literature, a somewhat different definition of the coalition
value can be also found, i.e., υp(S) ⊆ R|S|, where υ(S) = υp(S)×R|N/S|.

2In some classical papers, e.g., [18], a game in characteristic function form
is also assumed to be superadditive; however, in this work we rely on the
terminology and classification proposed in [17].
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properties of the grand coalition, i.e., the coalition of all nodes.
Toward this goal, we will use a classical solution concept of
coalitional game theory, namely, the core [18]-[19], [24]-[26].

A payoff vector x of a canonical game is said to be in its
”core” if no set S ⊂ N , S 6= ∅ of players can improve upon
it. In other words, no coalition S can provide higher payoffs
for all its members than that prescribed by the vector x. Now,
we will turn this intuitive description of the core concept into
a mathematical definition.

Definition 2. The core C(N , υ) of an NTU canonical game
(N , υ) is the set of payoff vectors defined as

C(N , υ) =
{

x ∈ υ(N )| ∀S ⊂ N , @y ∈ υ(S), s.t. yS ≥ xS
}
.

(13)

The grand coalition N is said to be stable iff the core of the
corresponding game is not empty, i.e., C(N , υ) 6= 0.

It is of utmost interest in the analysis of any canonical
game to determine whether its core is non-empty, i.e., if
the grand coalition is stable. In general, proving the non-
emptiness of the core is an NP− complete problem since the
number of possible coalition structures grows exponentially
with the number of players [27], [24]. A fundamental result
in proving that the core is non-empty is related to showing
that the analyzed game is balanced. For an NTU game,
the balancedness condition is sufficient yet not necessary, as
proved by Scarf in [25]; therefore, every balanced NTU game
has a non-empty core, but not vice versa. For this reason,
Billera [26] and a few more authors (e.g., see [28]) refined the
notion of a balanced game. However, for our discussion here,
it suffices to consider the balancedness condition from [25].
The formal definition follows.

Definition 3. [25] An NTU game (N , υ) is called balanced,
if the following inclusion statement holds⋂

S∈B
υ(S) ⊆ υ(N ), ∀B, (14)

where B is a balanced subsets’ family, i.e., a family of non-
empty, proper subsets of N where there exist positive weights
δS for S ∈ B such that∑

S∈B,k∈S

δS = 1, ∀k ∈ N . (15)

The weights δS have the property that if any player is
selected, the sum of the weights corresponding to those
coalitions in B that contain the individual, must be equal
to one. For instance, assume a three person game. Then, an
example of a balanced family is the collection of all two
player coalitions, since δ{1,2} = δ{2,3} = δ{1,3} = 0.5 can
be selected as a system of weights [25]. The balancedness
condition in (14) states that, for each balanced family B, it
should hold that the intersection of the sets of payoff vectors
corresponding to each coalition S in B is contained in υ(N ).
Note that the condition in (14) is obviously related to the
superadditivity property in (12), but neither condition directly
implies the other [29].

Now, the former definitions enable us to investigate some

properties of the MSD game defined in III-B. Specifically, we
will analyze the MSD game in its two forms, based on the type
of the combination rules previously discussed in Sec. II. Note
that, under the assumptions made in Subsec. III-A, the MSD
achieved at each node k in a connected network of N nodes,
can be well-approximated by the following expressions [7]:

1) in case of combination weights using the Hastings rule

MSDHastings
k (N ) ≈ µM

2
·
(

N∑
k=1

σ−2
vk

)−1

, (16)

2) in case of a doubly stochastic combination rule

MSDdoubly
k (N ) ≈ µM

2
· 1

N
·
(

1

N

N∑
k=1

σ2
vk

)
. (17)

Theorem 1. The MSD game with the Hastings combination
rule, under the assumptions A1-A3, is a canonical one and its
core, as defined in (13), is a non-empty one.

Proof. Clearly, the game is in characteristic form. Further-
more, it is superadditive due to the payoff vectors defined by
the MSD expression in (16). Apart from having inherently
indivisible payoffs, note also that all nodes in the same
coalition achieve the same maximum estimation accuracy, and
due to this special property, the superadditivity of this game
clearly implies its balancedness. Finally, due to the fact that
it is balanced, the MSD game with the Hastings combination
rule has a non-empty core.

Theorem 2. Under the assumptions A1-A3, the MSD game
with a doubly stochastic combination rule cannot be guaran-
teed to be canonical and its core, as defined in (13), cannot
be guaranteed to be non-empty.

Proof. Assume the case of arbitrarily different noise variances
{σ2

vk
}Nk=1 at different nodes. Then, one can easily check that,

in general, two disjoint coalitions S1 and S2 could be found
that do not satisfy the superadditivity property in (12). For
instance, this is the case where, for some m ∈ {1, 2}, it holds
that
µM

2
· 1

|Sm|2
∑
k∈Sm

σ2
vk
<
µM

2
· 1

(|S1|+ |S2|)2

∑
k∈S1∪S2

σ2
vk
.

In other words, the condition above actually states that
−MSD(Sm) > −MSD(S1 ∪ S2), for some m ∈ {1, 2}.
Similarly, one could also find two disjoint coalitions S1 and
S2, where S1 ∪ S2 = N , that do not satisfy superadditivity.
This implies that the core of the game with the setting above,
as defined in (13), is empty since at least one coalition
may deviate from the grand coalition and provide higher
payoffs for all of its members. Thus, in the case of arbitrary
noise variances, the MSD game with a doubly stochastic
combination rule cannot be guaranteed to have a non-empty
core.

Remark 1: Note that, for sufficiently similar noise variances
at all nodes, it may happen that the superadditivity property
is satisfied even for a doubly stochastic rule, and thus the
corresponding game has a non-empty core. To realize this,
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let us assume an extreme case where all nodes have exactly
the same noise variances, i.e., σ2

vk
= σ2

v . Then, the grand
coalition would form since the noise variances averaged over
any coalition are exactly the same and due to the fact that
1/N < 1/|S|, for any S ⊂ N .

Remark 2: Note that the core (and the coalitional stability)
can be defined not only with respect to the grand coalition,
but also with respect to any coalitional structure R (all nodes
partitioned into some disjoint coalitions), as in the seminal
paper by Aumann [30]. This problem can be classified as
a static coalition formation game [17], where an external
factor may impose a certain coalitional structure, and the main
objective is to study this structure’s stability. As mentioned
before, the number of possible coalition structures grows
exponentially with the number of players; thus, it is reasonable
to examine one or very few coalition structures. For instance,
assume that there exists an X = {X1, X2} composed of two
disjoint groups of nodes, X1 and X2, where within each group
the variances are the same or sufficiently similar, i.e., σ2

v,Xm
,

for m ∈ {1, 2}. Now, for a doubly stochastic combination rule,
if the variances of the two groups are different enough, i.e.,

σ2
v,Xm

|Xm|
<
|Xm| · σ2

v,Xm
+ |X`| · σ2

v,X`

(|Xm|+ |X`|)2 , ` 6= m (18)

is satisfied for some m ∈ {1, 2}, then the core can be shown
to be non-empty for this particular X , i.e., C(N , υ,X ) 6= ∅.3

D. NSPE setting generalization: NSPE-MSD game

This subsection is concerned with a coalitional game-
theoretical analysis of an NSPE setting. As surveyed in Sec. II,
an NSPE setting assumes that not all nodes have exactly the
same interests; to put it differently, several phenomena may
affect the nodes in a different way (or at different scales).

We leave aside for the moment the formal definition of an
NSPE-MSD game. The focus is put instead on the natural
question whether the coalitional stability of a single-interest
network (traditional diffusion) is related to the coalitional
stability in an NSPE setting. The answer is positive, under
certain assumptions.

To show this, the first step is to check if there is a way to
decouple the estimation processes related to ςoj and ςoj′ . This
could significantly facilitate the analysis of the NSPE-MSD
game.

Note that, even under assumptions A1-A2 and A4, in the
general case there is an inherent coupling between the estima-
tion processes related to ςoj and ςoj′ , where j, j′ ∈ {1, . . . , J}
and j 6= j′. Specifically, this coupling is due to the influence
of higher order data moments that are multiplied by µ2 in
the expressions for mean-square performance. Furthermore,
this effect occurs regardless of the cooperation strategy. For
instance, for a classical, standalone LMS filter see discussion
in [31]. On the other hand, for cooperative NSPE settings, an
interested reader may consult the papers in [10]-[11]. However,
for sufficiently small step sizes (A3) , this effect can be

3The analysis of a game with an explicit cooperation cost and the problem
of finding a stable coalition structure will be addressed in Sec. IV.

ignored. Based on [11], we will show this for the diffusion
NSPE case that is of interest in this paper.

Theorem 3. Under assumptions A1-A4, for k ∈ Pj ∩ Pj′ ,
the estimation processes of ςoj and ςoj′ can be considered
uncoupled, i.e.,

MSDk(N ) ≈
∑
j∈Ik

MSDk,ςj (Pj) (19)

where MSDk,ςj (Pj) is the MSD at node k related to estima-
tion of ςoj .

Proof. The proof and an illustrative example are given in
Appendix A.

Now, let us recast the problem in a game-theoretic form,
i.e.,

- the set of players is given as NNSPE = {N (1), . . . ,N (J)},
where N (j) = Pj and j ∈ {1, . . . , J},

- the coalition value υ(S) ∈ R|N (1)|+...+|N (J)| is the
set of payoff vectors υ(S) = υ1

(
S ∩N (1)

)
× . . . ×

υJ
(
S ∩N (J)

)
, where υj

(
S ∩N (j)

)
∈ R|N (j)|, ∀j ∈

{1, . . . , J}. The maximum payoff x(j)
k , that a node k ∈

Pj may achieve in a coalition S∩N (j), while estimating
parameters ςj , is given by

x
(j)
k

(
S ∩N (j)

)
= −MSDk,ςj

(
S ∩N (j)

)
. (20)

The definitions above can be seen as a rigorous formal-
ization of the intuition that each player should be defined as
a node per each estimation task that is within its interest. In
other words, a single node may represent more than one player.
Also, an NNSPE can be seen as the natural generalization of
the notion of grand coalition, for an NSPE setting. Finally,
the foremost results of this subsection are summarized in the
subsequent theorem.

Theorem 4. The NSPE-MSD game with the Hastings combi-
nation rule, under the assumptions A1-A4, is a canonical one
and its core C

(
N NSPE, υ

)
is non-empty. Also, under the same

assumptions, the core C
(
N NSPE, υ

)
of a doubly stochastic

combination rule NSPE-MSD game is non-empty iff the core
C
(
N (j), υj

)
of the underlying MSD game

(
N (j), υj

)
with a

doubly stochastic rule is non-empty for each j ∈ {1, . . . , J}.
Proof. The proof of the first statement is a generalization of
the proof of Thm 1, based on the decoupling of the estima-
tion processes and the core’s composition property in [18].
Specifically, the core of an NTU game (N , υ), which is the
composition of two games

(
N (1), υ1

)
and

(
N (2), υ2

)
that

have no interconnection, is the Cartesian product of the cores
of the two component games, i.e., C (N , υ) = C

(
N (1), υ1

)
×

C
(
N (2), υ2

)
. In the same vein, for J games, C (N , υ) =

C
(
N (1), υ1

)
× . . . × C

(
N (J), υJ

)
. Next, it has been shown

that, under the assumptions A1-A4, the estimation processes
in an NSPE setting are decoupled. Thus, the underlying games
with respect to each estimation task will not be interconnected,
and since each one has a non-empty core if the Hastings rule
is used, the first statement of this theorem holds. Finally, the
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proof of the second statement follows via similar reasoning
that is used to prove the first statement.

IV. COALITIONAL GRAPH GAME FOR PARAMETER
ESTIMATION

In the previous section, we have studied the (NSPE-)MSD
games, in which there was no explicit cost for cooperation. In
this section, by assuming non-negligible communication cost,
we formulate a coalitional graph game to model the NSPE
problem in which the nodes’ individual payoffs are related to
the specific graph that interconnects them4. Initially, by relying
on [32], the core of a graph game will be introduced as a
solution concept, and then, sufficient conditions for its non-
emptiness and stability of the grand coalition in our game
will be provided. Finally, for a general case in which the
grand coalition is not formed, a coalitional graph formation
game will be proposed, inspired by a so-called merge-and-
split approach [33].

A. NSPE-MSD-Graph-COMM game definition

Let the graph GS = (S, E) stand for a graph on coalition
S, where S and E are sets of vertices and edges, respectively.
Also, let the collection Γ denote the set of all graphs on
coalitions S ⊆ N that can appear in the game. Then, we
define an NTU coalitional graph game (Γ, υ) where υ is now
a graph-based function, assigning to every graph in Γ a set
of payoff vectors. Here, we model the maximum payoff x(j)

k

achieved by each node k in a coalition Sj connected by some
graph GSj , per each estimation task j ∈ {1, . . . , J} where
k ∈ Pj , as:

x
(j)
k (GSj ) = −MSDk,ςj (Sj)− η(j)

k (GSj ). (21)

In the relation above, the term η
(j)
k (GSj ) represents the total

communication cost that is incurred by a node k to establish
a coalition Sj , and is given by

η
(j)
k (GSj ) =

∑
l∈Sj

(k,l)∈GSj

εj(k, l) ,
(22)

where εj(k, l) is the communication cost required to connect
nodes k and l in a communication graph GSj .

Note that the players in S ⊆ N and the communication
links between them are represented by the vertices and the
edges in some graph GS ∈ Γ, respectively. Also, due to the
nature of our game, the graphs are assumed to be undirected,
and the players can only cooperate if they are connected.

B. NSPE-MSD-Graph-COMM game analysis

To study the game defined above, we will first comment on
the objectives and solution concepts developed in the literature
on coalitional graph games. A coalitional graph game model

4In our preliminary work on this topic [1], we have analyzed coalitional
formation game in the NSPE setting where a broadcast communication cost
has been assumed. Here, a more general communication cost, namely, a
graph-based function, is assumed. Therefore, we will detail a stability concept
applicable to such a game.

was first introduced by Myerson in [34]. Ever since, it has been
adopted and adapted in different contexts and applications,
see [17],[32],[35],[36]. In this subsection, we will look for a
sufficient condition for the stability of the grand coalition, that
is, a graph connecting all players in our game.

The core of a graph game can be seen now as the set of all
payoff vectors attainable for some allowed graph connecting
all players that are not dominated by any coalition connected
through a graph in the collection of allowed graphs [32]. In
other words, a payoff vector lies in the core of the graph game
if there is no possible graph on a coalition which can make
all of its members better off. The formal definition follows.

Definition 4. The core C(Γ, υ) of an NTU graph game (Γ, υ)
is the set of payoff vectors x ∈ RN satisfying, for at least one
GN ∈ Γ, that x ∈ υ(GN ) and that it does not exist a coalition
S ⊂ N , a graph GS ∈ Γ and a vector y ∈ υ(GS) such that
yk ≥ xk, ∀k ∈ S.

Next, based on [32] as well as on particularities of the NSPE
problem, we define sufficient conditions for the non-emptiness
of the core of our graph game.

Definition 5. An NTU graph game (Γ, υ), with power measure
function m, has a non-empty (balanced) core C(Γ, υ) if, ∀j ∈
{1, . . . , J}, it holds that

(i) ∀k ∈ N (j), the graph G{k} ∈ Γ and for some zk ∈ R, the
set υ(G{k}) is given by υ(G{k}) = {x ∈ R|N (j)| |xk ≤
zk},

(ii) ∀Sj ⊆ N (j) and ∀GSj ∈ Γ, the set {(xk)k∈Sj ∈
R|Sj | | x ∈ υ(S) andxk ≥ zk,∀k ∈ Sj} must be
bounded,

(iii) ∀Sj ⊆ N (j) and ∀GSj ∈ Γ, the set υ(GSj ) is closed
and comprehensive, i.e., if x ∈ υ(GSj ) and y ∈ R|N (j)|

are such that yk ≤ xk ∀k ∈ Sj , then y ∈ υ(GSj ),
(iv) the game is graph balanced, i.e., if, for at least one

GN (j) ∈ Γ, it holds that

∩rp=1υ(F p) ⊆ υ(GN (j)), ∀F , (23)

where F = {F 1, . . . , F r} is a graph balanced family in
Γ(j), i.e., a family of r graphs in Γ(j) where, for a given
power measure function m, there exist positive numbers
λp, with

∑r
p=1 λp = 1, such that

r∑
p=1

λpm(F p) =
1

N
· 1N . (24)

In the definition above, a power measure m on some graph
GSj is simply a vector m(GSj ) ∈ R|N (j)| with the elements
satisfying

∑
k∈GSj

mk(GSj ) = 1 and being zeros elsewhere.
For instance, a power measure may reflect the relative position
of each player within the graph. Also, in the definition above,
Γ(j) represents all allowed graphs related to an estimation task
j which can appear in the game.

Let us define now some useful quantities for obtaining
sufficient conditions for the grand coalition stability in our
graph game. Firstly, let the term gain

(j)
min correspond to the

minimum possible gain that some coalition S1 can obtain after
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merging with another coalition S2, while estimating ςoj , as

gain
(j)
min = min

Sj
1 ,S

j
2⊂N

Sj
1∩S

j
2=∅

{
gain(j)(S1, S2)

}
(25)

where

gain(j)(S1, S2) = MSDk,ςj (Sj1)−MSDk,ςj (Sj1 ∪ Sj2). (26)

Next, consider that the edge with the highest communication
cost among the nodes in Pj is given as

ε(j)
max = max

(k,l)∈GSj

∀GSj∈Γ

εj(k, l).
(27)

Theorem 5. The core C(Γ, υ) of the NSPE-MSD-Graph-
COMM game with Hastings combination rule, under the
assumptions A1-A4, is non-empty if

gain(j) (Pj \ {k}, {k}) ≥ ε(j)
max , ∀j ∈ {1, . . . , J}.

(28)

where k is the node with the worst variance in a set Pj ,
i.e., σ2

v,k = max l∈Pj
{σ2

v,l}. Furthermore, for each estimation
task j, there exists at least one graph in that core with a tree
structure.

Proof. Clearly, MSDk,ςj (GSj ) = MSDk,ςj (Sj), for all GSj ∈
Γ. Also, observe that the NSPE-MSD-Graph-COMM game is
graph balanced if

gain
(j)
min ≥ ε(j)

max , ∀j ∈ {1, . . . , J}. (29)

Next, due to following property of the Hastings combination
rule

MSDk,ςj (Pj) ≤ MSDk,ςj (Sj2), ∀Sj2 ⊆ Pj , (30)

it holds that

gain
(j)
min = gain(j) (Pj/{k}, {k}) , (31)

if σ2
v,k = max l∈Pj

{σ2
v,l}.

Now, assume that a graph GN whose payoff vector x ∈
υ(GN ) lies in the core C(Γ, υ) is not a tree. This implies
that at least one communication link, e.g., (l, i), can be
removed while still preserving the same coalition size con-
nected through a graph G′N . Clearly, xk(G′N ) > xk(GN ), for
k ∈ {l, i}, due to (21), while the best payoffs all other nodes
may achieve remain unchanged. Accordingly, the non-empty
core must contain payoff vectors corresponding to a tree graph.

We remark that the sufficiency conditions in (28) are rather
conservative. Observe that obtaining more specific and sharper
sufficient conditions for the core non-emptiness of a graph
game is highly dependent on the set of allowed graphs Γ,
both on the number of graphs and their allowed structures.
For instance, assume that only a single star topology network
GN and its subgraphs are allowed in a graph game. Also,
assume that k stands now for the central node in both GPj ,
∀j ∈ {1, . . . , J}, while l denotes a leaf node. Then, sufficient

conditions for its core to be non-empty can be written as

gain(j) ({k},Pj \ {k}) ≥
∑
l∈Pj

εj(k, l) (32)

and

gain(j) ({l},Pj \ {l}) ≥ εj(k, l), ∀l ∈ Pj \ {k}. (33)

For this specific example, the conditions above not only
are sharper than the one in (28) but also necessary. In fact,
one should check the benefits of the grand coalition only with
respect to the fully non-cooperative case.

C. NSPE-MSD Graph Formation game based on Merge-Split

Due to the fact that the grand coalition will not form in
general, this subsection is devoted to answering the question
of which coalition graphs will form. Note that finding stable
coalition groups involves exponential computational complex-
ity with respect to the number of players [27]. In addition
to this, here we also need to find a proper coalition graph
connecting the nodes in each coalition group, which increases
the complexity even further. Thus, the main challenge here is
to devise an efficient algorithm that allows nodes to make and
break coalitions in a distributed way. Specifically, the focus
will be put on the so-called merge-split strategy, being firstly
presented in [33], and investigated in the context of several
applications [17], [24], [37]-[39]. To that aim, let us make the
following definitions.

Definition 6. A collection of coalitions S is the set of mutually
disjoint coalitions, i.e., S = {S1, . . . , Sq}, where Sn ⊂ N for
n = 1, . . . , q. If a collection S comprises all the nodes of N ,
then the collection S is a partition of N . Finally, a collection
of graphs on a collection S is the set of specific graphs on
each coalition in S, i.e., GS = {GS1 , . . . , GSq}.
Definition 7. The Pareto order operator . for comparing
two collections of graphs on the same collection S =
{S1, . . . , Sq}, i.e., GS and G′S , is defined as follows

GS . G′S ←→ xk(GS) ≥ xk(G′S), ∀k ∈ S (34)

with at least one node satisfying the strict inequality >. Simi-
larly, for two collections of graphs on two different collections
X = {X1, . . . , Xm} and S = {S1, . . . , Sq}, where X and S
are partitions of the same subset of nodes A ⊆ N , the notation
GX . G′S means that xk(GX ) ≥ xk(G′S), ∀k ∈ X ,S, with at
least one node satisfying the strict inequality.

Now, a distributed graph formation algorithm based on the
merge, rearrange and split steps is provided in the table on the
following page. In the algorithm, note that J separate graph
formation games are given, an |N (j)|−player game for each
estimation task j, where j ∈ {1, . . . , J}.

Initially, a merge step is perfomed based on the Pareto
order. In other words, a merge of some coalitions is possible
if the payoff of each node involved either increases or remains
the same but it never decreases. Practically, this step can
be implemented as follows. Starting from a collection of
graphs related to a network partition S(j), for each estimation
task j ∈ {1, . . . , J}, some coalition Sji , connected through
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Algorithm 1 Merge-rearrange-split for NSPE diffusion
Initial state: Start with some set of graphs {GSj

1
, . . . , GSj

q
}

where S(j) = {Sj1, . . . , Sjq} is a partition of N (j), ∀j ∈
{1, . . . , J}.

Proposed Graph Formation for NSPE Algorithm:
Phase I - Adaptive coalitional graph formation:
repeat

a) ∀j ∈ {1, . . . , J}, merge any set of coalition graphs
{GSj

1
, . . . , GSj

q
} if it holds G∪q

n=1S
j
n
. {GSj

n
}qn=1 and if

the newly formed graph exists in the set of allowed graphs,
i.e., G∪q

n=1S
j
n
∈ Γ. Thus, it is possible to merge only with

those coalition(s) to which its member nodes have direct
communication link(s).

b) ∀j ∈ {1, . . . , J}, rearrange the graph G∪q
n=1S

j
n

to
G′∪q

n=1S
j
n

on any coalition
⋃q
n=1 S

j
n, if there exists G′∪q

n=1S
j
n

such that G′∪q
n=1S

j
n
. G∪q

n=1S
j
n

. The search should exclude
the leaf nodes that are connected by the edges which are
of the minimum costs among all edges that are allowed to
these leaf nodes.

c) ∀j ∈ {1, . . . , J}, split any coalition graph G′∪q
n=1S

j
n

if it holds {G′
Sj
n
}qn=1 . G

′
∪q

n=1S
j
n

and if all corresponding
graphs are allowed, i.e., {G′

Sj
n
}qn=1 ∈ Γ.

until merge-rearrange-split iteration terminates.

Phase II - NSPE diffusion strategy: Run the adaptation (4)
and the combination step (5) at each time instant i.

Repeat periodically: To account for time-varying noise vari-
ances and/or changing communication costs during the
network operation.

graph GSj
i
, starts the merging process by performing pair-

wise negotiations with other coalitions (after e.g., random
pairing) to which there are possible communication links. In
the negotiation process, some coordination among the nodes
in the same coalition is necessary in general, and can be
realized, for instance, through the coalition head. In the case
where the Hastings combination rule is employed, note that
the negotiation process is easier to perform since the merge
decision depends only on the two nodes which are to be
paired; other nodes in their coalitions will not be worse off
since they do not have additional communication cost and the
estimation accuracy will not be decreased irrespectively of the
negotiation decision. In case where the coalitions decide to
merge, based on the Pareto order, a new edge is added between
the graphs. Next, the newly formed coalition proceeds with
the search for merging until it is possible. The merge search
is repeated for all other coalitions from S(j) that have not
been merged yet. In the rearrange step, each coalition aims
at finding a tree that Pareto dominates the current graph. Two
types of situations may occur. Firstly, if the graph G∪q

n=1S
j
n

has at least one cycle, then every edge is checked to be
deleted, starting from the one with the maximum cost, until
G∪q

n=1S
j
n

has no cycles while still being connected. Secondly,

if graph G∪q
n=1S

j
n

is a tree, then a tree that dominates it ,
according to the Pareto order, is being sought. This step can
be realized through the coalition head that knows the topology
and communication costs within the coalition. Finally, the
split step, for every previously formed coalition

⋃q
n=1 S

j
n,

searches through every partition of
⋃q
n=1 S

j
n whose graphs are

allowed and are subgraphs of G∪q
n=1S

j
n

. To realize this step,
in addition to topology information the coalition head should
have knowledge of σ2

vk
related to the nodes in the coalition

being examined.
Note that the search in all three steps, and thereby the

complexity of the algorithm, is limited by the set Γ. Thus,
the complexity can be significantly reduced for the trees with
several leafs.

The algorithm performs several cycles of these three steps
until it converges to a stable graph structure, which can be
defined as the graph structure where no coalitions have an
incentive to pursue coalitional graph formation through merge,
arrange or split steps. This is closely related to the so-called
Dhp-stability concept, proposed in [33] for the original merge-
split algorithm. Specifically, a partition S is Dhp-stable, if,
for the partition S, no coalition has an incentive to split or
merge [33], [37]. Furthermore, as every iteration of merge-split
terminates, a resulting partition from such iterations cannot
be subject to any further merge or split; thus, every partition
resulting from the merge-split algorithm is Dhp-stable [37].

Therefore, our proposed merge-rearrange-split algorithm
also terminates for any initialization, and the coalition structure
always converges to a stable coalition structure where no
player has incentive to leave its coalition graph. To realize
this, note first that in the specific case where only complete
graphs are allowed by Γ, the proposed algorithm reduces to the
classical merge-split. On the other hand, in the general case,
there is an additional degree of freedom w.r.t. the original
merge-split, and it is related to finding a proper graph on a
given coalition. Due to the fact that this degree of freedom is
also optimized using the Pareto order, where in each graph
change no node in the graph is worse off, the proposed
algorithm terminates and converges to the coalition structure
where no coalition (graph) has an incentive to split, rearrange
or merge.

V. SIMULATIONS

In this section, we initially provide some computer simula-
tions that verify the main findings presented in Sec. III. Later,
the graph game results of the previous section are illustrated
by simulating the proposed graph formation algorithm.

A. Validation of Theorems 1-2 and 4-5

Let us remind that in order to prove Thm. 1-2 and Thm. 4-5,
the theoretical expressions for MSD in the steady state (16)-
(17) have been used. Here, we confirm the results by firstly
simulating a traditional diffusion LMS setting, and then, its
NSPE-based counterpart.

We consider a network of N = 15 nodes. The mea-
surements follow the observation model (1) with wok = wo

and Mk = M = 8, ∀k ∈ N . By following assumption
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A3, the stepsize in the adaptation step (8) is chosen to be
sufficiently small, i.e., µ = 5 · 10−3. The regressors uk,i
are zero mean Gaussian random variables with autocovariance
Ru = I . Next, the noise variances for nodes 5, 6 and 11 are
σ2
v5 = σ2

v6 = σ2
v11 = 7 · 10−3, while for all other nodes

they are chosen from the interval (0.05, 0.2). The network is
connected by a topology where 4 ≤ nk ≤ 6 for any node
k ∈ N , see Fig. 9. For each plot, the results are averaged over
50 randomly initialized independent experiments. The steady-
state curves are generated by running the algorithms for 3 000
iterations. The quantities of interest, namely, MSD at each
node, are then obtained by averaging the last 300 samples
of the corresponding learning curves. For each independent
experiment, the deterministic vector wo is randomly selected
from the interval (0, 1) and then normalized such that its norm
equals 1.

For the diffusion LMS, we consider the following coalition
structures,

a) the grand coalition, i.e., where nodes cooperate all to-
gether,

b) two disjoint coalitions of nodes specified by X1 =
{5, 6, 11} and X2 = N \X1,

c) random coalition structure with at least two coalitions.
Also, we include the LMS-based non-cooperative strategy in
the comparison.

Figure 3 depicts the comparison in the case where the
traditional diffusion LMS employs the Hastings combination
rule (10). Although there is a significant diversity among the
noise variances at different nodes, it can be observed that the
grand coalition is beneficial for all nodes.

On the other hand, in this simulation setting the grand
coalition does not bring improvement to all nodes in the case
of doubly-stochastic combination weights, as shown in Fig 4.
Here, as a doubly stochastic rule, we use the Metropolis rule
given by

ck,l =

{
1

max{nk,nl}
l ∈ Nk \ {k}

1−∑m∈Nk\{k} ck,m l = k
. (35)

Note that the disjoint coalitions structure (b) is the most
beneficial for coalition X1, while the grand coalition is the
most beneficial for the nodes in X2. However, since X1

can deviate from the grand coalition, the grand coalition is
not stable. Furthermore, it can be observed that the disjoint
coalitions structure (b) is stable, since no node or group of
nodes can leave coalition structure X = {X1, X2} and make
all its members better off.

In Remarks 1 and 2 of Sec. III-C, it has been suggested that,
for sufficiently similar noise variances of all nodes, the grand
coalition can be stable. Therefore, we now simulate the non-
cooperative LMS and the traditional diffusion LMS for the
grand coalition structure (a) and two disjoint coalitions X1

and X2 as in (b), for the doubly stochastic combination rule
in (35). Specifically, Figure 5 presents the results related to
node 5 (which is in X1) for different noise variance diversity
coefficient defined as σ2

v,X2
/σ2

v,X1
. The noise variance σ2

v,X2

takes different values such that the coefficient in the range
from 10 to 2. It can be observed that when the diversity
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Fig. 3. Steady-state MSD per node for the Hastings combination rule in the
traditional setting, i.e., wo

k = wo, ∀k ∈ N .

coefficient is below 6, the grand coalition is more beneficial
than the disjoint coalition structure (b) and thus, it is stable.
Note also that, for |X1| = 3 and |X2| = 12, the condition
in (18), which characterize when the disjoint coalition structure
(b) can be stable, reduces to 6 · σ2

v,X1
< σ2

v,X2
; thus, Fig. 5

verifies this condition as well.
Next, Figure 6 analyzes an NSPE scenario with a simulation

setting similar to the one for Figs. 3 and 4, yet the results for
Hastings and doubly stochastic rule are plotted together. Here,
there are two estimation tasks, i.e., ςoa and ςob , and their areas of
influence are set to be Pa = {1, . . . , 9} and Pb = {7, . . . , 15},
respectively. For each independent experiment, vectors ςoa and
ςob are randomly selected from the interval (0, 1) and then
normalized. The filter lengths Mς,a and Mς,b are chosen to be
the same, i.e., Mς,a = Mς,b = 8. Similarly to the traditional
diffusion scenario in Figs. 3 and 4, it is shown that the grand
coalition for the Hastings case is stable for both estimation
tasks, while the core C

(
NNSPE, υ

)
for the doubly stochastic

rule is empty in this simulation setting.

B. Graph game

In this subsection, we simulate the proposed NSPE merge-
rearrange-split protocol so as to illustrate its effectiveness and
also to verify the discussion in Sec. IV.

The communication cost between the nodes k and ` is mod-
eled by a simple exponential model, i.e., ε(k, `) = β·e(rk,`/r0),
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Fig. 4. Steady-state MSD per node for a doubly stochastic combination rule
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Fig. 5. Steady-state MSD of node 5 for different variance similarity coef-
ficients related for the doubly stochastic combination rule in the traditional
setting.

where r0 is a reference distance, rk,` denotes the distance
between the nodes k and `, while β is a normalization
coefficient. To establish a coalition Sj through some graph
GSj , the total communication cost η(j)

k (GSj ) for each node
k ∈ Sj is the sum of its active communication links, as in (22).
We consider a network of N = 15 nodes where each node k
has a noise variance σ2

vk
between 0.1 and 0.6. There are two

vectors of parameters to be estimated, i.e., ςoa and ςob , with
Pa = {1, . . . , 8} and Pb = {6, . . . , 15}. We set µ = 0.001
and Mς,a = Mς,b = 10. We consider the Hastings combination
policy so we use the MSD expressions provided in (48).

In Fig. 7, an outcome of a single realization of the proposed
protocol is presented. For both estimation tasks, all possible
links between the nodes are denoted by the dotted lines. On
the other hand, the graphs which are the outcome of the graph
formation algorithm for both estimation tasks are given by the
solid lines. Normalization coefficient β is set such that the
condition in (28) is satisfied. It can be noticed that the resulting
graphs for both estimation tasks are indeed the trees.

Figure 8 plots the number of nodes in coalition graphs
resulting from the NSPE merge-rearrange-split algorithm as
a function of the communication cost, which is characterized
by normalization coefficient β. For both estimation tasks, the
maximum and the average coalition size are presented. The
results have been averaged over 50 experiments where we

1 2 3 4 5 6 7 8 9
−45

−40

−35

−30

−25

−20

−15

−10

Node index

M
S

D
 in

 s
te

ad
y−

st
at

e 
[d

B
]

 

 

Hastings−grand coalition (a)
Hastings− disjoint coalitions (b)
Non−cooperative
Doubly− grand coalition (a)
Doubly− disjoint coalitions (b)

(a)

7 8 9 10 11 12 13 14 15
−45

−40

−35

−30

−25

−20

−15

Node index
M

S
D

 in
 s

te
ad

y−
st

at
e 

[d
B

]

 

 

Hastings− grand coalition (a)
Hastings− disjoint coalitions (b)
Non−cooperative
Doubly− grand coalition (a)
Doubly− disjoint coalitions (b)

(b)

Fig. 6. Steady-state MSD per node for the NSPE setting with (a) estimation
of ςoa and (b) estimation of ςob .

randomly set rk,`/r0 between 0 and 6. On one hand, it can
be observed that for no, or relatively small, communication
costs, the number of nodes connected in coalition graphs that
estimate ςoa and ςob are |Pa| = 8 and |Pb| = 10, respectively.
On the other hand, by increasing the communication costs, the
graphs on coalitions get split, and finally, they reduce to the
non-cooperative nodes.

VI. CONCLUSIONS

In this article, a distributed adaptive parameter estimation
problem has been modeled as a non-transferable coalitional
game. Initially, we have studied the parameter estimation
problem via traditional diffusion strategy as a canonical game;
afterwards, the analysis has been extended to NSPE setting.
The analysis has focused on the Hastings combination rule
and on the group of combination policies that are doubly
stochastic. For both, the traditional and the NSPE scenarios,
the grand coalition has been shown to be stable coalition
structure for the Hastings policy, while some insights have
been provided for the doubly stochastic ones. Then, we have
proposed a graph game for the NSPE setting that accounts for
the communication costs, which are modeled as graph-based
functions, and its stability has been studied. Afterwards, by
relying on the merge-split approach, a distributed algorithm
for graph formation has been proposed. Finally, indicative
computer simulations have verified the theoretical analyses.
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Fig. 7. Tree coalition graph structure for: (a) estimation of ςoa and (b)
estimation of ςob .
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APPENDIX A
PROOF OF THEOREM 3

Firstly, we need to provide some network recursions related
to mean-square performance of a diffusion NSPE algorithm.
To this aim, we define the weight-error vectors φ̃

(i)

k,ς = wok −
φ

(i)
k,ς , where we use notation introduced in Sec. II. Next, we

stack the weight-error vectors from all nodes, at each time i,
as follows

φ̃i = col
{
φ̃

(i)

1,ς , . . . , φ̃
(i)

N,ς

}
.

Similarly to [11], by subtracting both sides of (4) and (5)
from wok, and using the observation model in (3), we obtain

the following network-wide error recursion, i.e.,

φ̃i = C̆ (I − µDi)φ̃i−1 − µ C̆ Vi . (36)

In the relation above, the vector Vi is of dimension M̆ × 1,
where M̆ =

∑N
k=1Mk, and is given by

Vi = col{uH1,iv1,i, . . . ,u
H
N,ivN,i}, (37)

while Di is an M̆ × M̆ block-diagonal matrix, defined below

Di = diag{uH1,iu1,i, . . . ,u
H
N,iuN,i}. (38)

Finally, the extended combination matrix C̆ in (36) has the
following form

C̆ = col
{
{Cςj1 }j∈I1 , . . . , {C

ςj
N }j∈IN

}
, (39)

where the corresponding blocks are given as

C
ςj
k =

[
C
ςj
k1 C

ςj
k2 . . . C

ςj
kN

]
(40)

with

C
ςj
k` =


[
0Mς,j×M ′

`
c
ςj
k,`IMς,j

0Mς,j×(M`−M ′
`−Mς,j)

]
if ` ∈ Pj , and

0Mς,j×M`
if ` 6∈ Pj ,

(41)

and M ′` in (41) defined as M ′` =
∑
j′∈Ij` Mς,j′ where Ij` =

{j′ ∈ I` : j′ < j}.
Now, after equating the weighted norm of (36), taking the

expectation and relying on assumptions A1-A2, and A4, we
get the following relation

E‖φ̃i‖2Σ = E
{
‖φ̃i−1‖2(I−µDi)H C̆T Σ C̆ (I−µDi)

}
+E

{
µ2VH

i C̆T Σ C̆ Vi

}
,

(42)

where Σ is an arbitrary (M̆ × M̆) Hermitian nonnegative-
definite matrix that we are free to choose, so as to be able to
express the MSD performance criterion.

Now, based on analyses in [11], [5], for sufficiently small
step sizes we have

E
{

(I − µDi)
H C̆T Σ C̆ (I − µDi)

}
≈ BHΣB , (43)

where B = C̆ (I − µRU ) with RU = diag
{{
Ru,k

}N
k=1

}
,

while the autocovariance matrix of each node k has the
following structure Ru,k = diag

{{
R

(j)
u

}
j∈Ik

}
. Thus, the

relation in (42) can be written as

E‖φ̃i‖2Σ = E‖φ̃i−1‖2BHΣB + Tr (YΣ) . (44)

where Y = µ2 C̆ ·diag
{{
σ2
v,kRu,k

}N
k=1

}
·C̆T . Finally, by using

the Neumann series property, i.e., (I −X)−1 =
∑∞
m=0X

m,
we get

lim
i→∞

E‖φ̃i‖2Σ =

∞∑
m=0

Tr
(
BmY(BH)mΣ

)
. (45)

Let us focus now on analyzing MSD at some node k, where
k ∈ Pj ∩ Pj′ and j, j′ ∈ {1, . . . , J} and j 6= j′. Specifically,
let us on focus on the MSD with respect to a single interest, for
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x x x = 

Fig. 9. The product of BmY(BH)mΣ in (46).

instance, ςoj . To that aim, we set the selection matrix Σ to be
an M̆×M̆ zero matrix, except its block between (

∑k−1
`=1 M`+

M ′k)-th and (
∑k
`=1M` −M ′k −Mς,j)-th rows and columns

which is set to be IMς,j
. Now, it can be checked that due to

the peculiar structure that matrices B and Y have, it holds that

BmY(BH)mΣ = f
(
Cςj , R(j)

u ,
{
σ2
v,k

}
k∈Pj

,Mς,j

)
, (46)

where f(·) is some matrix-valued function. In other words, the
selection matrix Σ defined above selects only some columns of
the term BmY(BH)m with the non-zero blocks corresponding
only to the terms related to estimating ςoj , and none related to
ςoj′ where j 6= j′.

To visualize this, let us consider a small example. Without
loss of generality, assume that there are two nodes and two
estimation tasks for each of them. Then, assume that all terms
related to the first task are denoted by blue, while all terms
related to the second task are denoted by red color. Also, all
zero-blocks are white. Next, let us choose Σ so as to find MSD
at node 1 for the second task. Then, due to the structure of
the combination matrix and block-diagonal covariance matrix,
the first three terms in the product BmY(BH)mΣ have similar
chess-like structure. Finally, as depicted, the MSD at node 1
for the second task will have the terms that are related only
to this task; in other words, the terms of other task have no
influence on it. The tasks are decoupled.

Therefore, we conclude that, under assumptions A1-A4, for
k ∈ Pj ∩ Pj′ , the estimation processes of ςoj and ςoj′ can be
considered uncoupled, i.e.,

MSDk(N ) ≈
∑
j∈Ik

MSDk,ςj (Pj) (47)

where ∀j ∈ {1, . . . , J} and for instance, for the Hastings
combination rule, MSDk,ςj (Pj) is given by

MSDk,ςj (Pj) ≈

µMς,j

2 ·
(∑

k∈Pj
σ−2
vk

)−1

if k ∈ Pj ,
0 otherwise.

(48)
This concludes the proof.
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