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Abstract—In this study, the problem of computing a sparse
representation of multi-dimensional visual data is considered.
In general, such data e.g., hyperspectral images, color images
or video data consists of signals that exhibit strong local
dependencies. A new computationally efficient sparse coding
optimization problem is derived by employing regularization
terms that are adapted to the properties of the signals of
interest. Exploiting the merits of the learnable regularization
techniques, a neural network is employed to act as structure
prior and reveal the underlying signal dependencies. To solve
the optimization problem Deep unrolling and Deep equilibrium
based algorithms are developed, forming highly interpretable and
concise deep-learning-based architectures, that process the input
dataset in a block-by-block fashion. Extensive simulation results,
in the context of hyperspectral image denoising, are provided,
which demonstrate that the proposed algorithms outperform
significantly other sparse coding approaches and exhibit superior
performance against recent state-of-the-art deep-learning-based
denoising models. In a wider perspective, our work provides a
unique bridge between a classic approach, that is the sparse
representation theory, and modern representation tools that are
based on deep learning modeling.

Index Terms—Sparse coding, Deep Equilibrium models, Deep
Unrolling methods, locally dependent signals, Hyperspectral
imaging.

I. INTRODUCTION

OVER the past years, the sparse representation theory has
evolved into a mature and highly influential mathemati-

cal modeling framework, which has led to remarkable results
in a wide variety of applications across numerous disciplines
e.g., signal processing, image processing [1] and machine
learning [2]. A plethora of works have utilized the sparse
representation framework as an effective prior to model signals
encountered in various problems, ranging from image denois-
ing [3], inpainting [4] and spatial/spectral super-resolution
[5], [6] to unmixing [7], classification [8] and compression
[9]. Building upon its elegant theoretical foundation, sparse
representation modeling seeks to discover the inherent sparsity
structure that exists in many natural signals [1]. In greater
detail, in its most usual form, this model aims to approximate
a signal, represented by a vector, as a linear combination of
a limited number of columns, termed atoms, from a given
overcomplete matrix, known as a dictionary [10].

In general, sparse coding algorithms can be divided into two
main categories, that is, greedy methods and convex relaxation
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based approaches [11]. Greedy methods try to minimize the
l0 pseudo-norm, that captures the sparsity of the solution, in a
greedy fashion. They include prominent algorithms such as the
orthogonal matching pursuit (OMP) [12], the batch-OMP [13]
and the compressive sampling matching pursuit (CoSaMP)
[14]. On the other hand, convex relaxation based approaches,
such as the basis pursuit [15] and the least absolute shrinkage
and selection operator (Lasso) [16], replace the l0 pseudo-
norm with the l1 norm, thus forming a convex problem which
is much easier to solve.

However, with the exception of few works [6], [17], [7],
most existing sparse coding algorithms do not take into
account the fact that, in multi-dimensional visual data ap-
plications [18], the signals exhibit strong local dependencies
among each other, since they treat each signal independently,
limited to capture only the structure in each individual signal
vector. One of the key points in this work is that the proposed
algorithms take into account such local dependencies among
signals that appear at nearby columns inside the data matrix. In
the remaining of this work, we use the term data matrix to refer
to a structure where its columns correspond to the two spatial
dimensions (e.g., stacked) of the visual data and its rows corre-
spond to the temporal or spectral dimension. Moreover, we use
the term dependency across the data matrix, to emphasize the
fact that signals that appear at different columns inside a data
matrix exhibit strong dependencies. Also, in the following,
the term dependency along the data matrix will refer to any
structural similarity (including sparsity) that may be present in
each individual signal vector (i.e., column of the data matrix).
Signals that fall in to the category of interest in this work
often appear in various engineering disciplines, e.g., image
and video processing [18], [19], remote sensing [20], seismic
data [21]. A typical case of such signals is hyperspectral
images (HSI), where each individual hyper-pixel/spectrum has
internal structure (e.g., it admits a sparse representation) but
also hyper-pixels located at neighbouring spatial locations
demonstrate strong dependencies [7], [22] (see, also Fig. 1).
Additionally, in numerous scenarios and settings these signals
are corrupted by noise and/or interference. For instance, in
remote sensing applications the quality of hyperspectral im-
ages can be degraded by several factors e.g., atmospheric
turbulence, extreme temperatures and sensor imperfections
[23], [24]. Under the assumption that the considered signals
exhibit dependencies both along and across the corresponding
data matrix, this a-priori information can be utilized to derive
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sparse coding algorithms offering enhanced signal restoration
performance, but also reduced computational complexity.

To capture the local dependencies present in a data matrix,
in this work, we explore the potential of an emerging body
of studies which employs regularization terms properly learnt
from the data via the use of suitable neural networks [25]–[27].
In particular, these regularizers can be learnt effectively from
a collection of training data, thus enabling them to capture the
inherent structure of the data, and in the sequel, they can be
properly used in an optimization problem to promote the prop-
erties of the signals of interest. Convolutional Neural Networks
(CNNs) constitute effective models for learning the structure
of locally dependent data and deriving proper regularization
terms, due to their powerful representation capacity [26], [28].

Based on these remarks and different from the above-
mentioned studies, in this study, we investigate the idea
of combining the learnable regularizer (i.e., a convolutional
neural network) in conjunction with the sparsity promoting
l1 norm and a data-consistency term, to form a novel cost
function for the sparse coding problem, that is able not only
to reveal the sparsity nature of the signals but also to model
their dependencies. Employing variable splitting techniques,
and in particular the half quadratic splitting (HQS) approach
[29], a novel iterative sparse coding solver is formed.

Having derived an efficient solver for the problem at hand,
in the sequel, we leverage our results by employing the
recently developed model-based deep learning theory, and in
particular, Deep Unrolling (DU) [30] and Deep Equilibrium
(DEQ) [31] approaches. In particular, by unrolling a small
number of iterations of the proposed solver, a deep learning
architecture is formed where each layer corresponds to an
iteration of the sparse coding solver. The forward pass for this
network is equivalent to iterating the considered algorithm a
fixed number of iterations [30]. However, the deep unrolling
techniques are characterised by several limitations, including
stability, memory and numerical issues during the training
process, thereby the number of the unrolling iterations must
be kept quite small [32], [30]. To surmount the key limitations
introduced by the DU method, a second novel sparse coding
approach is proposed utilizing the efficiency of the Deep
Equilibrium models. The DEQ approach aims to express the
entire deep learning architecture derived from the DU method
as an equilibrium (fixed-point) computation, corresponding to
an efficient network with an infinite number of layers.

Adopting a wider perspective, our study aims to establish
a solid and useful bridge between a classical approach, that
is the sparse representation theory, and novel representation
tools which are based on deep learning modeling. Similar
efforts, from a different perspective, were made in [33], where
the benefits of connecting the problem of dictionary learning
with the more recently derived deep learning approaches were
highlighted. In this work, we contribute to this connection
considering that the proposed sparse coding algorithm can be
effectively embedded into deep networks based on the deep
unrolling and deep equilibrium strategies, and be trained via
end-to-end supervised learning. A great benefit that stems
from such an approach is the fact that the architecture of
the proposed deep networks is highly interpretable, since the

network parameters (i.e., the weights of the CNN prior and
the regularization coefficients) derive directly from the pa-
rameters of the proposed sparse coding iterative optimization
scheme. Along with their high interpretability, the derived
deep unrolling and deep equilibrium models are more concise,
requiring less training data. This stems from the fact that
the new models take into account the underlying physical
processes and utilize prior domain knowledge in the form of
correlation structure and sparsity priors.

The contributions of this work are summarized as follows:

• Considering the potentials of the learnable regularization
techniques, a novel sparse coding optimization problem
is proposed, involving a sparsity promoting l1 norm, a
learnable regularizer (using a convolutional neural net-
work) and a data-consistency term. The combination of
the l1 norm and the CNN module empowers the proposed
scheme to reveal and utilize both sparsity and structural
priors adapted to the properties of the signals, thus
offering significant performance gains, especially when
the signals are corrupted by severe noise.

• Based on the proposed sparse coding optimization frame-
work, two novel highly interpretable deep learning-based
methods are derived for solving the sparse coding prob-
lem. The first method is based on the deep unrolling
paradigm, which unrolls a fixed number of iterations
of the proposed optimization scheme, thus creating a
highly interpretable deep learning architecture. The sec-
ond sparse coding method utilizes the deep equilibrium
models, thus expressing effectively the above deep un-
rolling architecture as an equilibrium computation, which
corresponds to a deep network with infinite number of
layers. Unlike the deep unrolling architecture, in which
the number of layers must be kept relatively small due
to stability issues, the deep equilibrium model is able
to provide more accurate results, overcoming efficiently
many of the limitations introduced by the deep unrolling
model. Moreover, based on the findings on our previous
work [17], the proposed sparse coding deep networks
can be significantly enhanced in terms of computational
complexity, without sacrificing accuracy. In more detail,
under the assumption that neighboring signals can be
represented using the same support set from a given
dictionary, two additional approximate sparse coding net-
works are derived that utilise the deep unrolling and deep
equilibrium models, respectively.

• Overall, this study provides a novel connection between
a mathematically solid and extensively studied approach,
i.e., sparse representation modeling, from the one side
and modern deep learning methods from the other. The
resulting techniques consist of highly interpretable and
concise deep networks, as they are derived by utilizing
prior domain knowledge for the examined problems.
Apart from the concise nature of the proposed sparse rep-
resentation networks, these approaches exhibit better hy-
perspectral denoising performance against several state-
of-the-art deep learning architectures, providing valuable
evidence that the sparse representation models in the form
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of deep networks can play again a central role in image
and signal processing fields.

The remainder of this paper is organized as follows. In
Section II, a detailed literature review of related works is given.
In the sequel, Section III formulates the problem under study.
Sections IV and V derive the proposed full and approximate
algorithms, respectively. Section VI presents a series of exten-
sive numerical results in the context of hyperspectral image
denoising, that demonstrate the efficacy of the new algorithms.
Finally, Section VII concludes the paper.

II. PRELIMINARIES AND RELATED WORKS

A. Sparse coding algorithms

When signals that exhibit strong local dependencies are to
be modelled (i.e., signals that demonstrate dependencies both
across and along their data matrix), existing sparse coding al-
gorithms such as the OMP, Lasso or their accelerated learnable
versions (i.e., the learnable OMP [34] and the learnable LISTA
[35]) are incapable of capturing the dependencies along the
data matrix, since they treat each signal vector independently.
In literature, only few studies have explored the design of
sparse coding algorithms by incorporating priors regarding
also the dependencies of the signals along the data matrix.
Among them, the most prominent algorithm, called SUnSAL-
TV [7] combined the l1 norm with a total variation regularizer
[36], achieving state of the art results in the hyperspectral
unmixing problem. However, this algorithm is excessively
expensive in computational terms inducing its limited appli-
cability in real-time and/or high-dimensional applications.

Additionally, in our previous work [17], a block-wise sparse
coding strategy was employed under the assumption that a
block of nearby signals (e.g., a small spatial patch in a
hyperspectral image) can be described by the same atoms from
a given dictionary (same support set). Having identified the
proper support set for the signals, a total variation regularized
optimization problem was proposed to compute the optimal
representation coefficients. However, the total variation regu-
larizer has a tendency to over-smooth the reconstructed signals.

In contrast to the above approaches, in this study we
argue that more accurate and computationally efficient sparse
coding methods can be derived by employing regularization
terms that are adapted to the properties of the signals of
interest. Exploiting the merits of the learnable regularization
techniques, a convolutional neural network is employed to
act as structure prior and reveal the underlying signal local
dependencies, thus forming a novel sparse coding problem.
This optimization problem can be properly handled in the
context of deep unrolling and deep equilibrium approaches.

B. Deep Unrolling models

The literature regarding the deep unrolling paradigm is rich,
including numerous studies that aim to solve various problems,
such as [37]–[44]. Especially, in applications characterized
by limited available data (e.g., MRI reconstruction), these
approaches achieve state-of-the-art results [45]. More formally,
the deep unrolling models convert classical iterative inverse

imaging solvers into meaningful and highly interpretable deep
learning architectures, where each iteration of the solver
corresponds to one layer of the network.

Our study aligns with the above works only with this
unfolding strategy, since here we focus on designing sparse
representation frameworks able to capture the sparsity and
the inherent dependencies of signals that exhibit a specific
structure (e.g., hyperspectral images that consists of locally
dependent patches). Note that, as we mentioned in Section
(II-A) the learnable versions of the OMP [34] and lasso [35],
although they follow the deep unrolling paradigm, however
they focus only on accelerating the sparse coding procedure,
without offering any additional performance accuracy. In our
study, we explore interpretable deep architectures that both
improve the accuracy and the computational complexity of
the sparse coding process.

C. Deep Equilibrium Models

Deep equilibrium (DEQ) models have recently appeared in
literature, proposing an appealing framework for employing
infinite-depth networks by expressing the entire deep archi-
tecture as an equilibrium computation [31]. In this study, we
explore the potential of the above idea to alleviate some of
the drawbacks associated with the deep unrolling models. To
better explain the deep equilibrium approaches, let us proceed
with a short introduction. Consider a generic K-layer deep
feedforward model expressed by the following recursion

g(k+1) = f
(k)
θ (g(k), y) for k = 0, 1 . . .K − 1, (1)

where k is the layer index, g(k) denotes the output of the
k-th layer, y is the input, f (k)θ stands for some nonlinear
transformation. Interestingly, recent studies that impose the
same transformation fθ in each layer, namely f (k)θ = fθ were
able to yield competitive results against other state-of-the-art
methods [46]–[48]. Under this weight tying practice [49], the
authors in [31] proposed a DEQ model aiming to efficiently
find the fixed point g? where the further application of the
nonlinear transformation or iteration map fθ does not alter its
value. Particularly, the fixed point derives from the solution of
the following system

g? = fθ(g
?, y). (2)

Note that the above solution can be interpreted as an infinite
depth network. However, instead of computing this point by
repeating the transformation fθ, the DEQ method employs
more efficient ways to obtain the equilibrium or fixed point,
such as root finding techniques. Importantly, the weights θ of
the network can be obtained via implicit differentiation using
only constant memory.

In literature, only the study [32] has explored the applica-
bility of this methodology to solve generic inverse problems
concerning the image reconstruction, such as MRI reconstruc-
tion or image deblurring. Different from this approach, we
extend the potential of the deep equilibrium framework by
providing a novel bridge between the sparse coding problem
and this new deep learning method, that is the DEQ models.
In more detail, the proposed sparse coding problem can be
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considered as a fixed-point network that is able to surpass all
the limitations introduced by the corresponding deep unrolling
sparse coding model. To the best of the authors’ knowledge,
this is the first study that investigates a connection between
the sparse representation theory and deep equilibrium models.

D. Hyperspectral denoising

Over the years, great efforts have been devoted to the
problem of HSI denoising. The literature on this problem
is rich ranging from studies that employ optimization-based
methods, such as full-rank and low-rank approaches, to studies
that employ very deep learning architectures [24]. Concerning
the optimization-based full-rank approaches, this category of
studies aims to capture the spatial and spectral dependencies of
the hyperspectral images by employing wavelet-based methods
e.g., [50], [51], and spatial and/or spectral handcrafted regu-
larizers such as [52]–[54]. The low rank approaches, in turn,
have proven to be very efficient in utilizing the high spectral
dimension of the hyperspectral data [24], thus employing low-
rank constraints (e.g., the nuclear norm) or a combination of
low-rank constraints with other regularizers, such as the total
variation and the l1 norm [55]–[65].

Recently, leveraging the advances in deep learning, several
deep architectures have been proposed [66]–[68]. The 3D
Quasi-Recurrent Neural Network (QRNN3D) [66] employs
3D convolution components and quasi-recurrent pooling func-
tions to capture the spatio-spectral dependencies of the HSI,
providing state-of-the-art restoration results. Also, in [67] a
spatio–spectral deep residual CNN was proposed, utilizing 3D
and 2D convolutional filters to capture the dependencies of the
images. Furthermore, as pointed out in [66], [69], the MemNet
[70] network and one variation of it, called MenNetRes [69]
(i.e., a combination of MemNet with the Hyres approach [63] )
are able to provide competitive hyperspectral denoising results.

As already mentioned, the literature on hyperspectral
denoising can be categorized into two major directions i.e.,
the conventional (optimization-based) and the deep-learning-
based approaches. In this work, adopting a new approach, we
explore a bridge between these two categories. In particular,
we depart from the ad-hoc, intuition based design of deep
learning models, as those mentioned above, and move towards
well-justified architectures derived from the prior domain
knowledge of the examined problem. By providing a novel
connection between the classical sparse coding problem
and the deep equilibrium and deep unrolling strategies, this
makes the derived models enjoy not only the flexibility and
representation capacity of the deep learning approaches but,
more importantly, the concise structure of the conventional
(optimization-based) methods. Overall, the proposed models
constitute a step towards the so-called interpretable or
explainable deep learning.

III. PROBLEM FORMULATION

Consider a data matrix Y ′ that consists of a number of p
blocks, Y i, i = 1, . . . , n as

Y ′ =
[
Y 1 · · · Y i · · · Y p

]
, (3)

Spectral dimension

Fig. 1. A typical example of signals with strong dependencies across and
along (a block of) the data matrix are hyperspectral images, a main property
of which is that spatially neighboring hyper-pixels demonstrate strong spectral
similarity. In this figure, a small hyperspectral patch with size (n×n× d) is
selected to exemplify this property, thus forming a block of dependent signals
X ∈ Rd×N where d corresponds to spectral dimension of the image and
N = n2 is the two stacked spatial dimensions. The dependency along the
data matrix X corresponds to the spectral dimension and the dependency
across X corresponds to the dependencies among the hyper-pixels. (Image
retrieved from [71]) .

where each Y i ∈ Rd×N is termed as a block of signals.
Consider also that each block of signals is given as

Y i = Xi +W i , (4)

where W i ∈ Rd×N denotes a zero-mean noise term and Xi

denotes a clean block of signals. In this work we focus on
the case where each block Xi exhibits dependencies both
across and along its dimensions. Particularly, we consider that
each column of each block Xi has a specific structure (e.g., it
admits some sparse representation), and we term this property
as dependency along the data matrix/block. We also consider
that all the columns in each Xi have some dependencies, in
the sense that the knowledge of a subset of columns gives us
some information regarding the other columns, and we term
this property as dependency across the data matrix/block. As
an example, consider that block Xi may correspond to a block
(patch) of neighboring hyper-pixels of some hyperspectral
image. Figure 1 exemplifies these dependencies.

In such a setting, given a dictionary D ∈ Rd×M and
focusing on only one block of data, our scope is to compute
a sparse representation matrix Gi ∈ RM×N , so that

Xi ≈DGi , (5)

taking into account the fact that Xi exhibits dependencies
both along and across its dimensions. In solving this problem,
we also utilize knowledge about the assumed structure of
Xi. In this work, we also consider the problem of learning
such structure given suitable training data. In the following,
since we only focus on the sparse coding of each block of
data, we use the symbols Y and X to refer to one block of
data, in order to simplify our notation. At some points, where
necessary, we resort to the notation Y i and Xi for the blocks
of the data, but their use is clear from the context.

IV. DEEP ARCHITECTURES FOR SPARSE CODING

Considering the underlying structure of the noisy data block
Y , the studied sparse coding problem can be formulated into
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the following regularized optimization form

argmin
G

1

2
‖Y −DG‖2F + µ ‖G‖1,1 + λR(DG) , (6)

that consists of a data consistency term ‖Y −DG‖2F , a
sparsity promoting l1-norm aiming to capture the structure
along the data matrix, and some regularization term, denoted
as R(·), aiming to promote the inherent structure of the
reconstructed clean estimate DG. Furthermore, µ and λ are
positive scalar constants controlling the relative importance of
the sparsity level and the R(·) prior, respectively.

To efficiently solve (6), an alternating optimization method-
ology (AO) is employed in order to decouple the data fidelity
term, the sparsity term and the regularization term into three
individuals sub-problems. To this end, the above optimization
problem can be solved efficiently by employing the Half
Quadratic Splitting (HQS) methodology [29]. By introducing
two auxiliary variables, namely V and Z, the problem in (6)
can be reformulated as follows,

argmin
G

1

2
‖Y −DG‖2F + µ ‖V ‖1,1 + λR(Z) (7)

s.t. V −G = 0, Z −DG = 0.

The corresponding loss function aiming to solve HQS is given
by

L(G,V ,Z) =
1

2
‖Y −DG‖2F + µ ‖V ‖1,1 + λR(Z) (8)

+
b1
2
‖V −G‖2F +

b2
2
‖Z −DG‖2F ,

where b1, b2 > 0 denote a user-defined penalty parameters.
Thus, a sequence of individual subproblems emerges i.e.,

G(k+1) = argmin
G

L(G,V (k),Z(k))

V (k+1) = argmin
V

L(G(k+1),V ,Z(k))

Z(k+1) = argmin
Z

L(G(k+1),V (k+1),Z) (9)

The solutions of the subproblems for G, V and Z derive from

G(k+1) = (DTD + b2D
TD + b1I)

−1

(DTY + b1V
(k) + b2D

TZ(k)) (10a)

V (k+1) = soft (G(k+1), µ/b1) (10b)

Z(k+1) = prox λ
b2
R(DG(k+1)), (10c)

where the soft(., τ) denotes the soft-thresholding operator
x = sign(x)max(| x | −τ, 0) and the proxh(·) stands for
the proximal operator of function h.

Focusing on subproblem in (10c), the proximal operator can
be written as follows,

prox λ
b2
R(DG(k+1)) =

argmin
Z

1

2(
√
λ/b2)2

∥∥∥Z −DG(k+1)
∥∥∥2
F
+R(Z) (11)

Based on Bayesian estimation theory, relation (11) can be
interpreted as a Gaussian denoiser with noise level (

√
λ/b2).

Thus, any Gaussian denoiser in problem (6) can be employed

to act as a regularizer [26], [72]. In the case of interest in
this work, we propose replacing prox λ

b2
R(·) with a neural

network Nθ(·) , whose weights, denoted as θ, can be learned
from training data. Considering the powerful representation
modeling capacity of convolutional neural networks, a CNN
denoiser is used to capture the underlying structure priors
and the dependencies of the locally dependent signals (e.g.,
hyperspectral images). A great merit of the above modeling
procedure is the fact that, the explicit prior (regularizer) R(·)
can be unknown in relation (6) and be designed with properties
adapted to (and trained from) the observed signals.

Based on the above findings the proposed iterative updated
rules of the half quadratic splitting are summarized as follows

G(k+1) = (DTD + b2D
TD + b1I)

−1

(DTY + b1V
(k) + b2D

TZ(k))

V (k+1) = soft (G(k+1), µ/b1)

Z(k+1) = Nθ(DG(k+1)). (12)

Note that the neural network Nθ is pre-trained according to
the following loss function

l(θ) =

p∑
i=1

‖Nθ(Y i; θ)−Xi‖2F (13)

where θ denotes the weights of the CNN prior and {Xi,Y i}
represent p pairs of the training blocks of locally depen-
dent signals and their corresponding noisy versions, as for
example pairs of ground-truth and their corresponding noisy
hyperspectral image patches. After the training, a simple
alternative is to plug the learned CNN into the proposed
iterative strategy defined in (12) and then execute it until
convergence is reached. Although, this plug-and-play approach
provides empirically sufficient results, the procedure can be
considered piecemeal and sub-optimal, since, in this case, the
CNN module is being learnt independently from the forward
model (i.e., the dictionary D) associated with the proposed
sparse coding problem.

A. Deep Unrolling full sparse coding method (DU-full-sc)

Considering the limitations of the plug-and-play methodol-
ogy, in this section a deep unrolling approach is proposed to
efficiently tackle these issues by utilizing a form of training
called end-to-end. In more details, instead of learning the
CNN prior Nθ offline, we unroll a small number of iterations,
say K, of HQS scheme (12) and we treat them as a deep
learning network, where each iteration is considered a unique
layer of the proposed model. Thus, a K-layer deep learning
architecture is formed, where its depth and parameters are
highly interpretable due to the fact that the modeling of
the network is based on the physical process underlying the
examined problem. Figure 2 illustrates the architecture of a
K-layer deep unrolling network.

By denoting that G(K) is the output of the proposed
approach, an end-to-end training is performed seeking to
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𝐺(1)

𝒩𝜃(𝐷𝐺
(1))

soft(𝐺(1), 𝜇/𝑏1 )

Layer 1

… 𝑍(𝐾), 𝐺(𝐾)
Y, D 𝐺(2)

𝒩𝜃(𝐷𝐺
(2))

soft(𝐺(2), 𝜇/𝑏1 )

Layer 2

𝑍(1)

𝑉(1)

𝐺(𝐾)

𝒩𝜃(𝐷𝐺
(𝐾))

soft(𝐺(𝐾), 𝜇/𝑏1 )

Layer K

Fig. 2. An illustration of our proposed DU-full-sc (Section IV-A) model for solving the sparse coding problem in (6). Our deep unrolling architecture consists
of K layers. Each layer corresponds to a consecutive iteration of the proposed HQS scheme (12). Given the dictionary D and a noisy block of signals Y
(e.g., noisy hyperspectral image patch), the proposed method aims to generate accurately the denoised version of the block Z(K), along with a suitable sparse
coding matrix G(K) that captures the underlying structure of the data.

minimize some loss function with respect to CNN weights θ.
To this end, the following one is employed as loss function,

l(θ) =

n∑
i=1

∥∥∥DG
(K)
i −Xi

∥∥∥2
F
. (14)

where Xi corresponds to the ith target block of locally
dependent signals (e.g., hyperspectral image patch). Note
that the CNN prior Nθ is learnt based on the quality of
the estimate X̂ = DG(K), which strongly depends on the
dictionary. Above, it is assumed that all CNN priors Nθ(·)
of each layer (iteration) have identical weights θ (weight
tying practice), thus reducing the learnable parameters and
simplifying the architecture. Another noteworthy merit of the
deep unrolling approach is that the penalty parameters λ, µ
and b1, b2 introduced in relation (8) can be treated also as
network parameters to be learned via the end-to-end training
scheme. It should be highlighted that an accurate estimate of
X̂ implies that the corresponding sparse coding matrix G(K)

is enforced to capture the inherent structure of the data.
Note that the number of layers in our deep unrolling

approach must be kept small (5 to 15), This is attributed to the
fact that training the deep unrolling network with many layers
requires high GPU memory resources, since the calculation
of the back-propagation scales with the number of layers
[30]. In view of this, in the following section a novel deep
equilibrium model is proposed corresponding to an efficient
network with infinite number of layers, without demanding
high computational resources as the deep unrolling method.

B. Deep equilibrium full sparse coding (DEQ-full-sc) method

Assuming that all instances of the CNN prior Nθ have
identical weights θ at each layer of the proposed deep unrolling
method, it can be easily observed that the same layer is
repeated K times. In other words, the same transformation
or iteration map, say fθ is applied to the noisy input Y in
order to obtain an accurate denoised estimate X̂ of the input
and thus an accurate sparse coding matrix G capturing the
underlying structure of the noisy data.

In light of this, utilizing the deep equilibrium modeling an
implicit infinite-depth network (infinite number of iterations)
can be efficiently developed. Thus, the goal is to develop a
suitable iteration map fθ(·, y) based on the equations in (12).
In particular, by substituting the update of Z(k+1) and V (k+1)

𝒩𝜃(𝐷𝐺)

soft(𝐺, 𝜇/𝑏1)

𝐷𝑇𝐷 + 𝑏2 𝐷
𝑇𝐷 + 𝑏1𝐼

−1(𝐷𝑇𝑌 + 𝑏1𝑉 + 𝑏2𝐷
𝑇𝑍)

𝐺

𝑍

𝑉

𝑓𝜃(𝐺, 𝑌)

Fig. 3. An illustration of the proposed DEQ-full-sc (Section IV-B) model for
sparse coding. The iteration map fθ() is designed based on the HQS solver in
(15). Given the dictionary D and a noisy block of signals Y exhibiting local
dependencies along and across the block, the proposed method computes the
sparse coding matrix G, which is the fixed point of the iteration map fθ(·,Y ).

directly into the update rule of G(k+1), a single and more
concrete update expression is derived

G(k+1) =
(
DTD + b2D

TD + b1I
)−1

(
DTY + b1 soft(G

(k), µ/b1) + b2D
TNθ(DG(k))

)
. (15)

Note that the update of G(k+1) depends only on the previous
iterate G(k), thus formulating a fixed point iteration on the
sparse coding matrix G. Hence, the iteration map fθ(·,Y ) of
relation (15) can be written as,

G(k+1) = fθ(G
(k),Y ) (16)

Based on (16), the estimate of the target block of locally
dependent signals X , denoted as X̂

?
derives from

X̂
?
= DG?, (17)

where G? is the fixed point of the iteration map fθ(·, Y ).
Figure 3 illustrates of the designed iteration map fθ.

Having effectively designed the iteration map fθ(·,Y ),
the following challenging procedures emerge. First, given a
noisy block of signals Y and the weights θ of the CNN
prior, a fixed point is required to be computed during the
forward pass. Second, given pairs of ground-truth blocks of
signals exhibiting dependencies along and across the block and
their corresponding noisy versions {Xi, Yi}pi=1, the parameters
of the network need to be efficiently obtained during the
training process. Without loss of generality, to simplify the
notations and calculations below a single pair of training
examples, namely X,Y is considered. Additionally, we use
the vectorized versions of the matrices Y,X,G denoted as
y, x, g, respectively.

1) Forward pass - Calculating fixed points: The ”forward”
pass during training and inference (testing) in the proposed
DEQ model requires computing the fixed point

g? = fθ(g
?, y) (18)
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for the iteration map fθ(, y) defined in relation (16). A
simple strategy to estimate this point is to employ fixed point
iterations, i.e., iterating the following recursive scheme

g(k+1) = fθ(g
(k), y) (19)

However, this approach may be a time-demanding procedure.
To this end, the Anderson acceleration strategy [73] is em-
ployed in order to efficiently accelerate the process of the
fixed-point iterations. In particular, instead of using only the
previous iterate (i.e., g(k)) to compute the next proper point
to move, the Anderson acceleration procedure utilizes the m
previous iterates formulating the following update rule

g(k+1) = (1−β)
m−1∑
i=0

αig
(k−i)+β

m−1∑
i=0

αifθ(g
(k−i), y), (20)

for β > 0. The vector α ∈ Rm derives from solving the
following optimization problem

argmin
α
‖Uα‖22 , s.t. 1Tα = 1 (21)

where U = [fθ(g
k, y)− g(k), . . . , fθ(gk−m+1, y)− g(k−m+1)]

is a matrix containing the m past residuals. Note that, when
m is kept small (e.g., m=5) the computational complexity of
optimization problem (21) is significantly reduced.

2) Backward pass - Calculating the Gradient: The implicit
backpropagation employed during the training process to ob-
tain the optimal weights θ of the proposed DEQ model is
briefly explained. Based on the findings in [31], [74], the
goal is to efficiently train the network without requiring to
backpropagate though a large number of fixed point iterations.

Let g? = fθ(g
?, y) be the fixed point derived from the

forward pass and y the noisy block of signals such as a hyper-
spectral image patch corresponding to the original (noisy-free)
patch, denoted as x. Let l(·) be a loss function e.g., the mean-
squared error (MSE) loss that computes

l(θ) =
1

2
‖Dg? − x‖22 (22)

The loss gradient with respect to the network parameters θ is

∂l

∂θ
=
∂g?T

∂θ

∂l

∂g?
=

(
∂g?T

∂θ

)(
DT (Dg? − x)

)
, (23)

where the first factor is the Jacobian of g? w.r.t. θ and the
second factor is the gradient of loss function. However, in
order to compute the first factor, we need to backpropagate
through a large number of fixed point iterations. Thus, to
effectively avoid this highly demanding task, we employ the
following procedure to calculate the Jacobian of g? w.r.t. θ.

By implicitly differentiating both sides of fixed point equa-
tion (18). i.e., g? = fθ(g

?, y) and applying the multivariate
chain rule, we derive

∂g?

∂θ
=
∂fθ(g

?, y)

∂g?
∂g?

∂θ
+
∂fθ(g

?, y)

∂θ

Then, solving for ∂g?

∂θ , an explicit expression for the Jaco-
bian is derived

∂g?

∂θ
=

(
I − fθ(g

?, y)

∂g?

)−1
fθ(g

?, y)

∂θ
(24)

Using equation (24), relation (23) is reformulated as follows

∂l

∂θ
=
fθ(g

?, y)T

∂θ

(
I − fθ(g

?, y)

∂g?

)−T
DT (Dg? − x). (25)

In view of this, instead of backpropagating though a large
number of fixed point iterations to compute the loss gradient
in relation (23), we need to calculate only a memory- and
computationally-efficient Jacobian-vector product, as shown
in equation (25). Following [74], in order to compute this
Jacobian-vector product, we define the vector γ by

γ =

(
I − fθ(g

?, y)

∂g?

)−T
DT (Dg? − x)

which can be rearranged as follows

γ =

(
fθ(g

?, y)

∂g?

)T
γ +DT (Dg? − x). (26)

Note that expression (26) is also a fixed point equation. Thus,
solving this fixed point equation and computing the fixed point
γ?, the gradient in (25) can be written as

∂l

∂θ
=
fθ(g

?, y)T

∂θ
γ?. (27)

Thus, given a fixed point g? of an iteration map fθ(g?, y), the
gradient computation procedure is summarized as follows:

1) Compute the quantity DT (Dg? − x) .
2) Compute the fixed point γ?, of equation (26).
3) Compute the gradient of the loss function via (27).

A great benefit from the above analysis is that the Jacobian-
vector product in (26) can be efficiently computed by conven-
tional automatic differentiation tools.

V. DEEP FAST ARCHITECTURES FOR SPARSE CODING

The scheme proposed in the previous section successfully
captures the dependencies that exist in each block of data, and
performs regularized sparse coding at the cost of increased
computational complexity. We note that the main reason for
this complexity is due to the requirement for a sparse matrix
G, which is promoted via the use of the l1 norm term that
is present in the cost function. However, the assumed local
dependency property, suggests that the signal vectors in a
block Y may have some sort of similarity, as the signals
in Figure 1. Motivated by this reasoning, in this section we
explore a more specific notion of dependency, that suggests
that the signal vectors in a block can be represented using the
same set of atoms from the dictionary. By adopting such a
model, it is possible to drastically reduce the computational
complexity of the scheme, since only one set of atoms, i.e.,
support set, must be determined. In the following we adopt
a two step approach, where in the first step a proper support
set S is determined for the whole block of signals Y , and
in the second step, an optimization problem is solved for the
computation of the coefficients of the sparse coding matrix,
given the support set determined. At the first step of the
proposed approach, the set of atoms that will be used for the
representation of the whole block of signals Y ∈ Rd×N must
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be determined. For this task, we propose to first compute the
average/centroid signal of the block

yc =
1

N

N∑
i=1

yi yi ∈ Rd, (28)

and then employ some sparse coding algorithm (e.g., the OMP)
to sparsely encode the vector yc using the given dictionary. The
required support S is finally given as the set of atoms used in
the representation of the vector yc.

Having identified a proper support set S, it is possible to
formulate an optimization problem that is significantly less
computationally intensive as compared to the problem in (6),
for the computation of the entries of the sparse coding matrix.
In particular, we consider the problem

argmin
GS
‖Y −DSGS‖2F + λRθ(DSGS) , (29)

where DS is the matrix that results from the dictionary D
after keeping only the columns/atoms indexed by the set S, and
GS is the corresponding matrix of representation weights. It
should be noted that matrix GS is not sparse, since it contains
only the nonzero elements of the sparse coding matrix G.

To sum up, given a block of signals Y , the following
procedure is employed:

1) Compute the centroid signal yc of the block Y .
2) Determine the support set S of the centroid signal yc,

using some sparse coding algorithm,
3) Based on the support of the centroid signal, compute

the corresponding representation coefficients for all the
signals in Y by solving problem (29).

The details of efficiently solving problem (29) are provided in
the following sub-section.

A. Optimization via HQS

To efficiently solve the proposed optimization problem in
(29), the HQS methodology is employed again, hence deriving
the following constrained optimization form,

argmin
GS

1

2
‖Y −DSGS‖2F + λR(Z) (30)

s.t. Z −DSGS = 0 .

The corresponding loss function aiming to solve HQS is

L(GS ,Z) =
1

2
‖Y −DSGS‖2F + λR(Z) (31)

+
b

2
‖Z −DSGS‖2F ,

where b > 0 denotes a penalty parameter.
Similarly with the proposed methods in section IV, we

derive the following update rules

G
(k+1)
S = (DT

SDS + bDT
SDS)

−1

(DT
SY + bDT

SZ
(k))

Z(k+1) = proxλ
bR

(DSG
(k+1)
S ) = Nθ(DSG(k+1)

S ) (32)

Again the proximal operator proxλ
bR

(·) is replaced with a
CNN Nθ(·) whose weights can be learned from training data.

B. Deep Unrolling fast sparse coding (DU-fast-sc) method
Similar to the Deep Unrolling method developed in Section

IV-A, a small number of iterations (K) of the HQS scheme
in (32) can be unrolled, thus forming a K-layer deep learning
model. After that, the learnable parameters of the proposed
architecture, namely the CNN denoiser Nθ(·) and the penalty
parameters λ and b, can be learnt via end-to-end training.
Given pairs of noisy/corrupted and corresponding ground-truth
blocks of signals {Y i,Xi}, we seek to minimize the following

loss function l(θ) =
∑n
i=1

∥∥∥DSiG(K)
Si −Xi

∥∥∥2
F
, where DSi

corresponds to the selected atoms derived from the centroid
signal of the ith noisy block Y i and G

(K)
Si is the output of

our deep unrolling method. Note that alternatively we can use
directly the Z

(K)
i as an accurate estimate of the target block

Xi. Figure 4 provides an illustration of the proposed deep
unrolling method.

C. Deep equilibrium fast sparse coding (DEQ-fast-sc) method
Following the methodology in Section IV-B, our goal is to

design again an efficient iteration map fθ(·, Y ) utilizing the
equations in (32). To simplify further the update rules, we
substitute the expression for Z(k+1) into the expression for
G(k+1), thus obtaining the following update rule

G
(k+1)
S =

(
DT
SDS + bDT

SDS

)−1
(
DT
SY + bDT

SNθ(DSG
(k)
S )
)

(33)

Thus, equation (33) can be considered as a fixed point iteration
of the variable GS , where the iteration map satisfies the
following recursive scheme

G
(k+1)
S = fθ(G

(k)
S ,Y ) (34)

The corresponding estimate of the target block of locally
dependent signals X , denoted as Z? is given by

Z? = DSG
?
S , (35)

where G? is the fixed point of the iteration map fθ(·, Y ).
Figure 5 provides an illustration of the proposed DEQ ap-
proach. Details concerning the calculation of fixed points and
the training procedure are given in the previous Sections IV-B1
and IV-B2, accordingly.

VI. EXPERIMENTAL PART

In this section, extensive numerical experiments are pre-
sented, in the context of hyperspectral imaging, to validate
the efficacy and applicability of the proposed sparse cod-
ing schemes. In more detail, the problem of hyperspectral
image (HSI) denoising is considered, where the proposed
deep unrolling and deep equilibrium models are compared
with various sparse coding algorithms and state-of-the-art HSI
denoising approaches. As it will be shown, based on solid
experimental results, the proposed sparse coding approaches:
• Perform remarkably better than classical sparse coding

based algorithms.
• Exhibit superior performance compared to state-of-the-art

deep learning based techniques.
• Notably outperform the plug-and-play approaches.
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Fig. 4. An illustration of the proposed DU-fast-sc (Section V-B) for solving the sparse coding problem, for one block Y . The proposed architecture consists
of two main stages. First, based on the centroid signal of the block Y the most suitable atoms from the dictionary, denoted as DS are selected to represent
the signals in Y . After that, the proposed Deep Unrolling method is deployed in order to accurately compute the corresponding representation coefficients
GS for each signal in the block Y .

𝒩𝜃(𝐷𝒮𝐺𝒮) 𝐷𝒮
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Fig. 5. An illustration of the proposed DEQ-fast-sc approach (Section V-C)
for solving the sparse coding problem, for one block Y . The proposed
architecture consists of two main stages. First, based on the centroid signal
of the block Y the most suitable atoms from the dictionary, denoted as
DS are selected to represent the signals in Y . After that, the proposed
Deep Equilibrium method is deployed in order to accurately compute the
corresponding representation coefficients GS for each signal in the block Y .
The output matrix GS is the fixed point of the iteration map fθ(·,Y ) defined
in (33).

A. Dataset

To demonstrate the merits of the proposed models, we used
a publicly available hyperspectral image dataset, pertaining
to a variety of natural scenes. In more detail, hyperspectral
images from the iCVL dataset [71] were employed to train
and validate our models. From this dataset, 70 hyperspectral
images were employed to generate the training set, whereas
another 50 images were used to generate the testing set. The
examined hyperspectral images constitute 1300 × 1300 × 31
dimensional cubes, where the last dimension d = 31 corre-
sponds to the spectral dimension (i.e., 31 spectral bands in
the 400− 700 nm spectrum).

B. Implementation Details

1) Block processing: The training as well as the testing
datasets used in our experiments contain blocks (patches)
collected by the hyperspectral images. Each such block (patch)
has a size of n × n × d. The parameter n, that defines the
spatial size of each block (patch), plays an important role in
the accuracy as well as in the computational complexity of
the proposed approaches. In order to obtain a proper value
for the parameter n, several experiments with different values
for n and noise levels were conducted. Figure 6 presents the
resulting hyperspectral image denoising performance, in terms
of the Peak Signal to Noise Ratio (PSNR), for various values
of the parameter n. As it can be seen from these results, the
value n = 60 gave the best performance, for the considered
dataset. Thus, for the rest of our experiments the block(patch)

size was set equal to 60 × 60 × 31. allowing the proposed
methods to exhibit remarkably low computational complexity
(and associated runtimes), as can be seen from Table VI

2) Training and Testing setting: During the training phase,
the hyperspectral images are corrupted by several types of
noise. After that we split both ground-truth and noisy images
into non-overlapping patches(blocks) as described above and
then we randomly sample pairs of hyperspectral patches (i.e.,
blocks of signals, which exhibit dependencies along and across
the block ) and their corresponding noisy versions, denoted
as {Xi, Yi}pi=1. During the testing phase, the following
procedure was employed. Initially, the image was corrupted
with a specified type of noise, and then it was processed into
n×n×d non-overlapping patches. For each noisy block, say Y
the corresponding sparse coding matrix was computed using
the proposed schemes. To validate the accuracy of the sparse
coding models we compared the reconstructed HSI with the
corresponding original image in terms of the Peak Signal to
Noise Ratio (PSNR), the Structural Similarity Index (SSIM)
[75] metrics and the Spectral Angle Mapper (SAM) [76].

3) Noise setting: Real-world hyperspectral images are cor-
rupted by several types of noise e.g., Gaussian noise, dead
pixels or lines, and stripes [24], [66]. To this end, following
the experimental set up of the study in [66], we examine two
noise scenarios. In the first scenario, the images are corrupted
by i.i.d. Gaussian noise corresponding to three different noise
levels with σ = 30, 50, 70, referred to as i.i.d Gaussian noise.

In the second scenario, a more realistic case is explored
considering three types of mixed noise types:

• Case 1: Non-i.i.d. Gaussian noise. The entries of the
different spectral bands are corrupted by zero-mean Gaus-
sian noise with different noise intensities, in particular,
corresponding to σ randomly selected from 10 to 70.

• Case 2: Non-i.i.d. Gaussian + Stripe noise. All bands are
corrupted by non-i.i.d. Gaussian noise as in Case 1. One
third of the bands (10 bands) are randomly chosen to add
stripe noise (5 to 15 percentages of columns) [66].

• Case 3: Non-i.i.d. Gaussian + Deadline noise. The noise
generation process is similar as in Case 2 except that the
stripe noise is replaced by a so-called deadline noise [66].

4) CNN architecture: In our proposed models, a relatively
small CNN moduleNθ(·) was employed with 4 layers. In more
detail, each convolutional layer comprised of 64 filters with
size 3× 3 followed by a non-linear activation function ReLU.
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Fig. 6. Influence of the block(patch) size (n× n× 31) on the reconstruction accuracy of the proposed models. Note that that the third dimension (i.e., 31)
corresponds to the number of spectral bands of the hyperspectral images. Additionally, the performance of the state-of-the-art model QRU3D [66] is also
depicted to highlight that the proposed models are able to maintain competitive performance for a wide range of block size values.

Following the remarks of [72] the spectral normalization [77]
was imposed to all layers, thus guaranteeing that each layer
has Lipschitz constant (no more than) 1. The Regularizing
Lipschitz continuity was employed not only during the pre-
training of the CNN network but also during the training
phase of the proposed sparse coding models, hence providing
training stabilization and improved performance.

5) Dictionary: The analysis that has been conducted as-
sumes that the dictionary D ∈ Rd×M (d = 31) is known.
Thus, in all experiments a fixed dictionary was employed that
had been learnt using the KSVD [1] and OMP algorithms over
a collection of noisy hyperspectral images from the training
set and different from the images considered during the testing
phase. The considered dictionary contained M = 512 atoms.

6) Hyperparameters setting: Based on the training dataset,
the CNN module Nθ(·) was pre-trained utilizing the ADAM
optimizer via loss function (13). In particular, the number of
epochs was set to 150, the learning rate was set to 1e−03 and
the batch size was 16. Subsequently, this pre-trained version
of Nθ is used for initializing the respective model of the
proposed deep unrolling and deep equilibrium architectures,
and is further trained during the end-to-end training procedure.

Regarding the deep unrolling methods described in Section
IV-A and V-B (i.e., DU-full-sc and DU-fast-sc) the number of
unrolling iterations (or the number of the layers) was set to
K = 10. To proceed further, concerning the deep equilibrium
methods defined in Section IV-B and V-C (i.e., DEQ-full-sc
and DEQ-fast-sc) the Anderson acceleration procedure [73]
was deployed during the training phase for the forward and
backward pass fixed-point iterations. Specifically, the number
of fixed-point iteration during the forward and backward pass
was set to 20. Finally, during the end-to-end training phase of
the deep unrolling and deep equilibrium models, the ADAM
optimizer was deployed to update the network parameters. In
this case, the number of epochs was set to 100, the learning
rate was set to 1e− 04 and the batch size to 16. Note that a
strong advantage of the proposed models is the fact that all
the penalty parameters in equation (12) can be treated also as
network parameters to be learned via the end-to-end training.

C. Hyperspectral Denoising performance

1) Proposed sparse coding models against various sparse
coding algorithms: Since the proposed sparse representation
deep unrolling and equilibrium models are essentially generic
sparse coding algorithms, in this section, a thorough compari-
son is performed with several sparse coding algorithms. Table
I summarizes the average quantitative results of our proposed
methods, namely the DU-full-sc (Section IV-A), the DEQ-
full-sc (Section IV-B), the DU-fast-sc (Section V-B) and the
DEQ-fast-sc (Section V-C) in comparison with various well-
established sparse coding algorithms. It is evident that the
proposed approaches are markedly better than the other sparse
coding methods under comparison. Since the hyperspectral
images are a great example of signals containing blocks
with strong dependencies, the incorporation of a learnable
regularizer (CNN module) and the transformation of the sparse
coding optimization schemes into a meaningful and highly
interpretable deep learning architectures enable the proposed
methods to model effectively the underlying structure of the
noisy signals, thus offering great denoising properties.

2) Proposed sparse coding models against state-of-the-art
Hyperspectral denoising methods: Competing methods. To
fully demonstrate the merits and potentials of the proposed
models, we compare our methods with several representative
conventional as well as deep learning based approaches for
both i.i.d. Gaussian and mixed non-i.i.d. noise cases.

Following a methodology similar to [66], we note that
most conventional approaches are more suitable to tackle
noise cases with specific characteristics compatible to their
noise assumption. On the other hand, deep-learning based
approaches are able to tackle various noise scenarios. In order
to perform a fair comparison, we employed different well
studied conventional methods in the two considered noise
scenarios (Section VI-B3).

To this end, in the i.i.d. Gaussian noise scenario, we
compare with some optimization-based/baselines approaches
including filtering-based approaches (BM4D [78]), dictionary
learning (TDL [55]) and tensor-based (ITSReg [56], LLRT
[57]) approaches. In the mixed non-i.i.d noise scenario, we
adopt several classical optimization-based methodologies, in-
cluding low- rank matrix recovery approaches ( [58]–[60],
[62], [63]), and a low-rank tensor approach ( [61]). Concerning
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TABLE I
PROPOSED METHODS VERSUS VARIOUS SPARSE CODING APPROACHES: RESULTS UNDER SEVERAL I.I.D. GAUSSIAN NOISE LEVELS ON ICVL DATASET.

Sigma Metrics Noisy batch-OMP Lasso SunSaL-TV fast-TV DU-full-sc DEQ-full-sc DU-fast-sc DEQ-fast-sc
[13] [16] [7] [17] Section IV-A Section IV-B Section V-B Section V-C

PSNR 18.54 36.03 36.41 37.98 38.62 42.60 42.80 42.75 42.87
30 SSIM 0.112 0.889 0.917 0.939 0.946 0.972 0.973 0.974 0.975

SAM 0.807 0.146 0.113 0.089 0.082 0.045 0.042 0.042 0.041

PSNR 14.12 33.17 33.54 36.13 36.74 40.22 40.75 40.62 40.77
50 SSIM 0.043 0.751 0.849 0.927 0.908 0.956 0.962 0.961 0.963

SAM 0.993 0.232 0.098 0.101 0.093 0.054 0.047 0.050 0.048

PSNR 11.21 30.91 31.30 34.49 35.02 39.14 39.27 39.01 39.25
70 SSIM 0.024 0.660 0.759 0.869 0.875 0.947 0.949 0.948 0.950

SAM 1.102 0.280 0.130 0.126 0.118 0.056 0.054 0.056 0.055

the deep learning approaches, we consider the state-of-the-
art QRU3D [66] model, and also the MemNet [70], and the
HSID-CNN [67] approaches. Note that we have carefully
replicated all the simulation parameters and have used the
exact same dataset (training and testing images) as used in
[66], thus ensuring a fair comparison with the results appearing
in that study. Regrading, the FastHyde method [62], we use
the Hyperspectral Denoising toolbox, called HyDE 1 [69].

Denoising in the i.i.d. Gaussian Noise Case: In this noise
scenario, the hyperspectral images are corrupted with zero
mean i.i.d Gaussian noise with three different noise levels
(more details in Section VI-B3). Table II summarizes the
main reconstruction accuracy comparison. As can be clearly
seen, the proposed Deep Unrolling and especially the Deep
Equilibrium-based models exhibit better performance results
as compared to the other approaches. Although the proposed
models are not designed explicitly for the HSI denoising
problem, their modeling capacity based on the sparsity and
the CNN-learnable regularizer enable them to provide com-
petitive performance against both traditional and deep learning
methodologies designed to tackle only the examined problem.

Denoising in a Mixed Noise Cases: To strengthen the
experiments, and demonstrate the capabilities of the proposed
models, a more realistic scenario is considered using three
types of mixed noise to generate the noisy samples. In brief,
cases 1-3 represent non-i.i.d Gaussian noise, non-i.i.d Gaussian
+ stripes, non-i.i.d Gaussian + deadline (see Section VI-B3).
Table III summarizes the results. In more detail, the proposed
models demonstrate competitive performance against the state-
of-the-art model QRU3D and notably outperform the other
approaches. Furthermore, the proposed deep equilibrium mod-
els and especially the fast version (i.e., DEQ-fast-sc) provide
better reconstruction results compared to the QRU3D method
for the task of removing mixed types of non i.i.d noise.

Figure 7 sheds light on the above results by presenting
the number of learnable parameters of the models, which are
involved in this experiment. It is notable that our proposed
methods not only achieve competitive performance but also
require considerably less parameters as compared to the two
best performing deep learning-based approaches, i.e., the state-
of-the-art model QRU3D and MemNet. In more detail, the
proposed models require 82.5% and 95% less parameters as
compared to the QRU3D and MemNet models. The above in-

1https://github.com/Helmholtz-AI-Energy/HyDe

Fig. 7. Model complexities comparison of our proposed sparse coding
schemes and two state-of-the-art networks under the i.i.d Gaussian noise
scenario with σ = 50. Although, the proposed models require 82.5%
and 95% less parameters compared to the QRU3D and MemNet models,
respectively, they are able to provide better or competitive performance.
Additionally, for the DU-fast-sc method we consider also the case where the
CNN network is different at each layer (i.e., the DU-fast-sc-non-tied-weights.)

teresting remark can be justified by taking into account that the
proposed models have well-justified architectures derived from
modeling of the underlying physical processes and utilizing
prior domain knowledge, in the form of correlation structure
and sparsity priors. Thus, the proposed methods enjoy both
the modeling capacity of the deep-learning methods, and the
concise structure of the sparse coding algorithms.

Denoising in the high SNR regime: Considering that in
real-world applications the SNR of the acquired hyperspectral
images is quite high, typically in the range 20 to 50 dB, in this
section, we compared the proposed two best-performing deep
equilibrium models against the state-of-the-art model QRU3D
and the MemNet model and some best-performing conven-
tional approaches in the case where the SNR is equal to 40dB.
Since the conventional methods perform better in high SNR
values, in this experiment, we have included some additional
methods that we omitted in the previous experiments. Table
IV summarizes the results. In the case of high SNR values the
conventional approaches provide better reconstruction results
as compared to the deep learning architectures. However, the
proposed deep equilibrium models are able to exhibit superior
performance against both the conventional and the state-of-the-
art QRU3D model. The above remark can be justified by the
fact that the proposed equilibrium models have been derived
through the transformation of the sparse coding optimization
schemes into a meaningful and highly interpretable deep
learning architectures, which enable the proposed methods to
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TABLE II
PROPOSED METHODS VERSUS SEVERAL STATE-OF-THE-ART DENOISING METHODS: RESULTS UNDER SEVERAL I.I.D. GAUSSIAN NOISE LEVELS ON ICVL

DATASET.

i.i.d. noise Metrics Noisy BM4D ITSReg FastHyde1 TDL LLRT HSID-CNN MemNet QRU3D DU-full-sc DEQ-full-sc DU-fast-sc DEQ-fast-sc
sigma [78] [56] [62] [55] [57] [67] [70] [66] Section IV-A Section IV-B Section V-B Section V-C

PSNR 18.54 38.45 41.48 38.37 40.58 41.99 38.70 41.45 42.28 42.60 42.80 42.75 42.87
30 SSIM 0.112 0.934 0.961 0.951 0.957 0.967 0.949 0.972 0.973 0.972 0.973 0.974 0.975

SAM 0.807 0.126 0.088 0.090 0.062 0.056 0.103 0.065 0.061 0.045 0.042 0.042 0.041

PSNR 14.12 35.60 38.88 37.42 38.01 38.99 36.17 39.76 40.23 40.22 40.75 40.62 40.77
50 SSIM 0.043 0.889 0.941 0.946 0.932 0.945 0.919 0.960 0.961 0.956 0.962 0.961 0.963

SAM 0.993 0.169 0.098 0.095 0.085 0.075 0.134 0.076 0.072 0.054 0.047 0.050 0.048

PSNR 11.21 33.70 36.71 36.14 36.36 37.36 34.31 38.37 38.57 39.14 39.27 39.01 39.25
70 SSIM 0.024 0.845 0.923 0.938 0.909 0.930 0.886 0.946 0.945 0.947 0.949 0.948 0.950

SAM 1.102 0.207 0.112 0.099 0.105 0.087 0.161 0.088 0.087 0.056 0.054 0.056 0.055

TABLE III
PROPOSED METHODS VERSUS SEVERAL STATE-OF-THE-ART DENOISING METHODS: RESULTS UNDER MIXED NOISE CASES ON ICVL DATASET.

Metrics Noisy LRMR LRTV NMoG TDTV FastHyde1 HSID-CNN MemNet QRU3D DU-full-sc DEQ-full-sc DU-fast-sc DEQ-fast-sc
noise [58] [59] [60] [61] [62] [67] [70] [66] Section IV-A Section IV-B Section V-B Section V-C

Case 1 PSNR 18.24 32.80 33.62 34.51 38.14 38.83 38.40 38.94 42.79 42.31 42.84 42.63 42.91
non i.i.d. SSIM 0.168 0.719 0.905 0.812 0.944 0.947 0.947 0.949 0.978 0.969 0.974 0.970 0.976

SAM 0.897 0.185 0.077 0.187 0.075 0.125 0.095 0.091 0.052 0.053 0.051 0.051 0.049

Case 2 PSNR 17.80 32.62 33.49 33.87 37.67 38.28 37.77 38.57 42.35 42.15 42.48 42.32 42.55
non i.i.d. SSIM 0.159 0.717 0.905 0.799 0.940 0.936 0.942 0.945 0.976 0.965 0.975 0.970 0.977
+ stripes SAM 0.910 0.187 0.078 0.265 0.081 0.142 0.104 0.095 0.055 0.058 0.052 0.055 0.052

Case 3 PSNR 17.60 31.83 32.37 32.87 36.15 37.31 37.65 38.15 42.23 42.18 42.35 42.25 42.44
non i.i.d. SSIM 0.155 0.709 0.895 0.797 0.930 0.918 0.940 0.945 0.976 0.961 0.973 0.0971 0.975

+ deadline SAM 0.917 0.227 0.115 0.276 0.099 0.106 0.102 0.096 0.056 0.060 0.055 0.058 0.055

TABLE IV
PROPOSED METHODS VERSUS SEVERAL DENOISING METHODS UNDER HIGH SNR REGIME.

Noise Metrics Noisy ItsReg LLRT FastHyde1 FORDN1 Hyres1 QRU3D DEQ-full-sc DEQ-fast-sc
[56] [57] [62] [51] [63] [66]

i.i.d. PSNR 40.5 50.05 50.17 51.16 49.25 48.81 48.85 52.26 52.35

model effectively and accurately the examined problem.

3) Proposed sparse coding models against the Plug-and-
play approaches: In this section a thorough comparison is
provided between the proposed deep unrolling and deep equi-
librium models, on the hand, and the corresponding plug-and-
play (PnP) approaches, termed as PnP-full-sc and PnP-fast-sc
respectively. Note that the PnP methodologies can be derived
from the iterative solvers in (12) and (32), where a pre-trained
neural network is plugged into the iterative algorithms and
execute them until convergence is reached. According to Table
V, the proposed models remarkably outperform the plug-and-
play approaches. This stems from the fact that the plug-and-
play methods are not optimized end-to-end, thus the CNN
network is trained independently form the considered problem
and the forward model i.e., the dictionary.

Focusing on the proposed methods, the Deep Equilibrium-
based models, namely the DEQ-full-sc and DEQ-fast-sc con-
sistently outperform the Deep Unrolling approaches (i.e., the
DU-full-sc and the DU-fast-sc) in all cases. Furthermore,
Figure 8 illustrates another great merit of the proposed Deep
Equilibrium-based approaches. In more detail, the Deep Un-
rolling methods, both the full and fast versions are optimized
for a fixed number of iterations/layers during training, and
hence increasing the number of iterations during inference
deteriorates the reconstruction accuracy. On the other hand, the
proposed deep equilibrium methodologies are able to maintain

or improve their performance for a wide range of iterations,
providing a balance between the desired computational com-
plexity and accuracy. Note that similar results were obtained
by considering the other types of noise, however due to space
limitations, we omit the respective figures. Additionally, it
should be highlighted that an additional difference between
the deep equilibrium and deep unrolling models is the fact
that the deep unrolling models provide the flexibility to
employ different denoisers at each layer (i.e., non-tied weights
approach) compared to the corresponding deep equilibrium
architectures that are restricted to use the same denoiser at each
layer (iteration). However, in our experiments (see, Figure 7),
we observed that the non-tied-weights deep unrolling models
provided no performance gains as compared to the tied-
weights deep unrolling models. The above remark is in-line
with recent works e.g., [32].

Among the Deep Equilibrium methods, the fast version (i.e.,
DEQ-fast-sc) provides slightly better reconstruction results
compared to the full version, namely the DEQ-full-sc. This can
be explained by considering that the examined noisy images
consists of blocks with underlying strong dependencies, thus
the assumption made in Section V that the signals in each
block can be described by the same support set based on
their corresponding average/centroid signal is well valid. In
other words, the average/centroid signals of the blocks are,
in essence, a denoised average vector that represents all noisy
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Fig. 8. Iterations vs PSNR of reconstructed images for the proposed deep
unrolling (i.e, DU-full-sc, DU-fast-sc) and deep equilibrium (i.e, DEQ-full-
sc, DEQ-fast-sc) models for the HSI denoising problem. The deep unrolled
models were trained for K = 10 iterations. The deep unrolling approaches
are optimized only for a fixed number of iterations/layers during training,
and hence increasing the number of iterations during inference deteriorates
the reconstruction accuracy. On the other, the proposed deep equilibrium
approaches are able to maintain or improve their performance for a wide range
of iteration. Additionally, it can be seen that the proposed models notably
outperform the plug-and-play approaches.

TABLE V
PROPOSED METHODS VERSUS PLUG-AND-PLAY (PNP) APPROACHES.

Noise Metrics PnP-full PnP-fast DU-full-sc DEQ-full-sc DU-fast-sc DEQ-fast-sc

i.i.d. PSNR 39.15 39.65 42.60 42.80 42.75 42.87
sigma 30 SSIM 0.941 0.950 0.972 0.973 0.974 0.975

SAM 0.070 0.067 0.045 0.042 0.042 0.041

i.i.d. PSNR 37.73 37.84 40.22 40.75 40.62 40.77
sigma 50 SSIM 0.927 0.932 0.956 0.962 0.961 0.963

SAM 0.079 0.072 0.054 0.047 0.050 0.048

i.i.d. PSNR 36.21 36.43 39.14 39.27 39.01 39.25
sigma 70 SSIM 0.901 0.915 0.947 0.949 0.948 0.950

SAM 0.089 0.081 0.056 0.054 0.056 0.055

PSNR 39.04 39.35 42.31 42.75 42.63 42.91
non i.i.d. SSIM 0.948 0.958 0.969 0.974 0.970 0.976

SAM 0.078 0.070 0.053 0.051 0.051 0.049

PSNR 39.17 39.54 42.15 42.48 42.30 42.55
non i.i.d. SSIM 0.948 0.952 0.965 0.975 0.970 0.977
+ stripes SAM 0.077 0.065 0.058 0.052 0.055 0.052

PSNR 38.88 39.05 42.18 42.35 42.25 42.44
non i.i.d. SSIM 0.940 0.948 0.961 0.973 0.0971 0.975

+ deadline SAM 0.085 0.080 0.060 0.055 0.058 0.055

signals in the blocks, thus enabling the fast method to estimate
more accurate supports. However, there is no an obvious
winner between the Deep Equilibrium methods, thus indicating
that the optimal choice in a particular application may be
problem- or setting-dependent.

D. Ablation Analysis

In this section, an ablation study was conducted in order to
investigate the sensitivity of the proposed methods to the most
significant parameters that affect their performance.

1) Impact of block size: Figure 6 illustrates the impact of
the block size on the performance of the proposed models. In
particular, we note that all the proposed models are able to
maintain better or competitive performance against the state-
of-the-art denoising model i.e., QRU3D [66], for a wide range
of block size values. In general, larger blocks provide better
performance, since the learnable regularizer (CNN network) is
able to capture more accurately the dependencies of the input
images. In the absence of ground truth images, and based on
the findings of Figure 6, a better strategy is to use a larger value

for the block size parameter. In any case, since the block size
parameter is related to the spatial extent of the dependencies
in the considered images, one can choose this parameter by
utilizing any such prior knowledge about the input data.

2) Impact of the Dictionary: To explore the impact of
the dictionary on the performance of the proposed deep
unrolling and equilibrium methods, we conducted experiments
considering the following three different dictionaries:
• D1: Based on [3], the dictionary is built as an over-

complete separable version of the DCT dictionary by
sampling the cosine wave in different frequencies.

• D2: This dictionary is computed by following a dictionary
learning approach using the noisy images in the training
dataset, as detailed in Section VI-B5, and is the option
used in all previous experiments.

• D3: This dictionary has been derived using noisy sim-
ulated images from a different dataset i.e., the Harvard
[79] dataset consisting of images with 31 spectral bands
in the visible spectrum 400-700 nm.

According to Figure 9, we can deduce that the performance of
the proposed models remains competitive in all cases, regard-
less of the dictionary employed. Interestingly, using a generic
dictionary such as the DCT or a dictionary derived form a
different dataset does not affect significantly the performance
of our approaches. In more detail, in all cases the proposed
deep equilibrium models are able to exhibit better performance
against the corresponding deep unrolling approaches.

The ability of the proposed models to retain competitive
performance for different dictionaries can be attributed to the
fact that the proposed approaches, given a fixed dictionary, are
optimized end-to-end, thus all their learnable parameters are
adapted to the structure of the selected dictionary. The above
explanation can be confirmed by observing in Figure 9 that
in the case of the plug-and-play approaches their performance
significantly deteriorates, when the dictionary is trained from
a different dataset (D3 dictionary) or it is derived from the
DCT transformation (D1 dictionary), since the neural network
is trained independently from the considered problem at hand
and the dictionary. Note that similar results were obtained by
considering the other types of noise, however due to space
limitations, we omit the respective figures.

E. Discussion and Future Work

Apart from the superior performance of the proposed mod-
els, their major difference/advantage over the deep learning
approaches e.g.,QRU3D [66], MemNet [70] and HSID-CNN
[67] is more fundamental. In more detail, the above mentioned
techniques are designed to tackle a specific task that is the HSI
denoising problem. On the other hand, it must be stressed
that the proposed high performance denoiser is actually a
useful and interesting by-product of a more general technique.
Indeed, the primary goal of this work is to present a novel
bridge between the sparse representation theory and the deep-
learning models, providing an efficient methodology which
preserves the generic modeling capacity of the classical sparse
representation algorithms. This methodology could be applied
to several problems which involve locally dependent signals
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Fig. 9. The impact of dictionary on the restoration performance of the
proposed models under i.i.d. Gaussian noise with level σ = 50, employing
three different dictionaries i.e., D1, D2, D3.

TABLE VI
AVERAGE RUNTIME (IN SECONDS) OF THE PROPOSED METHODS TO

RECONSTRUCT A HSI OF SIZE 1300× 1300× 31 .

Method DU-full-sc DEQ-full-sc DU-fast-sc 2 DEQ-fast-sc
Section IV-A Section IV-B Section V-B Section V-C

time[sec] 13.12 25.03 4.70 7.45

as those appearing in hyperspectral imaging (e.g, unmixing,
spatial and spectral super-resolution, deconvolution).

Moreover, a strong advantage of the proposed models
derives form the fact that the proposed approaches can be
extended to consider learnable regularizers other than the
simple CNN model in relation (10c). In particular, any state-of-
the-art HSI denoiser, such as QRU3D [66], can be employed.
The resulting scheme is expected to exhibit good performance
in a wide range of applications, other than denoising, such as
in HSI image unmixing or in super-resolution approaches. For
instance, in the unmixing problem various optimization-based
sparse coding algorithms [7], provide satisfactory results.
Based on the proposed optimization problem in (6), i.e.,

argmin
G

1

2
‖Y −DG‖2F + µ ‖G‖1,1 + λR(DG) , (36)

the dictionary can be replaced by a known library of end-
members and the variable G is the desired matrix of the
abundances. Thus, we can derive highly interpretable deep
equilibrium and unrolling networks to tackle this challenging
problem. As mentioned above the unknown regularizer R(·)
can be replaced by state-of-the-art hyperspectral denoisers.

Another appealing direction, is to incorporate the dictionary
matrix into the proposed sparse coding approaches and treat
it as a learnable parameter, thus providing novel deep un-
rolling/equilibrium dictionary learning models. However, this
procedure entails some challenges and is left for future work.

VII. CONCLUSIONS

In this work, a strong bridge between the sparse representa-
tion modeling and deep learning tools based on the deep equi-
librium and unrolling methodologies. The problem of com-
puting a sparse representation for multidimensional datasets

of locally dependent signals was considered. A regularized
optimization approach was proposed, where the considered
dependencies are captured using regularization terms which
was properly learnt from the data. Deep equilibrium and deep
unrolling based algorithms were developed for the considered
problem. Extensive simulation results, in the context of hy-
perspectral image denoising, were provided, that demonstrated
some very promising results in comparison to plug-and-play
methodologies and several recent state-of-the-art denoising
models.
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