
Citation: Iliopoulou, S.; Tsinganos, P.;

Ampeliotis, D.; Skodras, A. Synthetic

Face Discrimination via Learned

Image Compression. Algorithms 2024,

17, 375. https://doi.org/10.3390/

a17090375

Academic Editor: Arslan Munir

Received: 14 July 2024

Revised: 15 August 2024

Accepted: 20 August 2024

Published: 23 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Synthetic Face Discrimination via Learned Image Compression
Sofia Iliopoulou 1 , Panagiotis Tsinganos 1, Dimitris Ampeliotis 2 and Athanassios Skodras 1,*

1 Department of Electrical and Computer Engineering, University of Patras, 265 04 Patras, Greece;
sofia_iliopoulou@ac.upatras.gr (S.I.); panagiotis.tsinganos@ece.upatras.gr (P.T.)

2 Department of Digital Media and Communication, Ionian University, 491 00 Argostoli, Greece;
ampeliotis@ionio.gr

* Correspondence: skodras@upatras.gr

Abstract: The emergence of deep learning has sparked notable strides in the quality of synthetic media.
Yet, as photorealism reaches new heights, the line between generated and authentic images blurs,
raising concerns about the dissemination of counterfeit or manipulated content online. Consequently,
there is a pressing need to develop automated tools capable of effectively distinguishing synthetic
images, especially those portraying faces, which is one of the most commonly encountered issues. In
this work, we propose a novel approach to synthetic face discrimination, leveraging deep learning-
based image compression and predominantly utilizing the quality metrics of an image to determine
its authenticity.

Keywords: synthetic image detection; image compression; image forensics; deepfakes; photorealistic
images; variational autoencoders; hyperprior; discrete wavelet transform; deep learning

1. Introduction

Generative artificial intelligence (AI) models are rapidly expanding and have already
been integrated into various applications [1,2]. Progress has been influenced in part by the
development of novel methods like Generative Adversarial Networks (GANs) [3,4] and,
more recently, Diffusion Models [5,6], enabling the generation of synthetic data with excep-
tional realism and quality, achieving unmatched levels of photorealism. Simultaneously,
there is potential for malicious users to employ generative models to spread misinformation
across multiple social platforms. Additionally, there is a growing issue with verifying the
authenticity of images, as this becomes progressively more difficult [7]. Figure 1 depicts
the similarity between real and synthetic face images.

It is clear that both GANs and Diffusion Models produce images that are often in-
distinguishable to the naked eye. However, both image-generation methods have some
issues. GANs have certain limitations, such as mode collapse, in which the generator
fails to replicate the entire distribution of the training data, which results in repetitive or
limited outputs. Due to the adversarial nature of the training process between the generator
and the discriminator, the robustness of the discriminator is of utmost importance for the
generation of realistic outputs. Additionally, these networks have difficulty replicating
the high-level semantic features of real images. The most obvious visual artifacts that we
encounter in GAN-generated face images usually involve inconsistencies in the color or
symmetry of specific facial characteristics, i.e., the eyes [8]. On the other hand, Diffusion
Models transform noise into an image through an iterative diffusion process. Since they
are essentially graphics, they often display a lack of 3D modelling for objects and surfaces.
As a result, there are often asymmetries in features such as shadows and reflections. Many
images generated with Diffusion Models also exhibit a general inconsistency in bright-
ness [9,10]. Finally, both image generators leave some traces that can only be found through
statistical analysis of the image, both in the spatial and in the frequency domain [11].

The distinction between artificial and natural images has garnered significant interest
among researchers in multimedia forensics. The most common method for identifying

Algorithms 2024, 17, 375. https://doi.org/10.3390/a17090375 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17090375
https://doi.org/10.3390/a17090375
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-6248-2912
https://orcid.org/0000-0002-3872-4325
https://doi.org/10.3390/a17090375
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17090375?type=check_update&version=1

Algorithms 2024, 17, 375 2 of 19

synthetic images typically requires training a neural network for binary classification
(natural versus artificial) using a vast dataset containing labeled images. A crucial aspect
of this procedure often involves the application of a carefully selected range of image
enhancements in the training stage [1].

Algorithms 2024, 17, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/algorithms

Article

Synthetic Face Discrimination via Learned Image Compression
Sofia Iliopoulou 1, Panagiotis Tsinganos 1, Dimitris Ampeliotis 2 and Athanassios Skodras 1,*

1 Department of Electrical and Computer Engineering, University of Patras, 265 04 Patras, Greece;
sofia_iliopoulou@ac.upatras.gr (S.I.); panagiotis.tsinganos@ece.upatras.gr (P.T.)

2 Department of Digital Media and Communication, Ionian University, 491 00 Argostoli, Greece;
ampeliotis@ionio.gr

* Correspondence: skodras@upatras.gr

Abstract: The emergence of deep learning has sparked notable strides in the quality of synthetic
media. Yet, as photorealism reaches new heights, the line between generated and authentic images
blurs, raising concerns about the dissemination of counterfeit or manipulated content online. Con-
sequently, there is a pressing need to develop automated tools capable of effectively distinguishing
synthetic images, especially those portraying faces, which is one of the most commonly encountered
issues. In this work, we propose a novel approach to synthetic face discrimination, leveraging deep
learning-based image compression and predominantly utilizing the quality metrics of an image to
determine its authenticity.

Keywords: synthetic image detection; image compression; image forensics; deepfakes;
photorealistic images; variational autoencoders; hyperprior; discrete wavelet transform;
deep learning

1. Introduction
Generative artificial intelligence (AI) models are rapidly expanding and have already

been integrated into various applications [1,2]. Progress has been influenced in part by the
development of novel methods like Generative Adversarial Networks (GANs) [3,4] and,
more recently, Diffusion Models [5,6], enabling the generation of synthetic data with ex-
ceptional realism and quality, achieving unmatched levels of photorealism. Simultane-
ously, there is potential for malicious users to employ generative models to spread misin-
formation across multiple social platforms. Additionally, there is a growing issue with
verifying the authenticity of images, as this becomes progressively more difficult [7]. Fig-
ure 1 depicts the similarity between real and synthetic face images.

Citation: Iliopoulou, S.; Tsinganos,

P.; Ampeliotis, D.; Skodras, A.

Synthetic Face Discrimination via

Learned Image Compression.

Algorithms 2024, 17, x.

https://doi.org/10.3390/xxxxx

Academic Editor: Arslan Munir

Received: 14 July 2024

Revised: 15 August 2024

Accepted: 20 August 2024

Published: 23 August 2024

Copyright: © 2024 by the authors.

Submitted for possible open access

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Figure 1. Natural and synthetic images of human faces. (a) Natural faces from the CelebA_HQ
dataset, (b) synthetic faces from the StyleGAN2 dataset, and (c) synthetic faces produced with
stable diffusion.

In this work, we develop a new synthetic face discrimination method that is not based
on semantically meaningful features of an image. Our approach follows a completely
different concept. Specifically, we study the response of real and fake face images to deep
learning-based compression, and we distinguish them based on the differences of their
quality after compression. Our goal is to develop an alternative technique to GAN-based
detection methods that is also computationally efficient. Additionally, we aim at rendering
it to be more generalized than many GAN-based methods that excel only when dealing
with images generated by GANs, thus successfully also classifying images produced by
Diffusion Models.

The technique proposed in the present work offers a new way to address the issue of
DeepFake detection by using learned compression to distinguish synthetic face images, a
method not previously attempted. This differentiates the proposed approach from similar
studies that utilize deep learning methods for the same purpose. It examines the classifi-
cation problem from an alternative perspective. It can be broken down into two separate
techniques which both work well independently: compression and binary classification.
Furthermore, it is capable of identifying images produced by diverse models, such as
GANs and Diffusion Models. Moreover, it is more computationally efficient than some
cutting-edge methods and highly effective against certain types of image manipulation,
such as Gaussian noise.

2. Related Works

Several techniques have been suggested in recent years to differentiate synthetic faces
from real ones. Initially, several methods took advantage of various characteristics of the
images, which were influenced by GAN models. Yang et al. [12] used irregularities in the
positions of facial landmarks like eye corners, the nose tip, and the mouth to identify fake
images. Specifically, they utilized the fact that GANs are able to generate characteristics
of the face such as the eyes, mouth, nose, etc., that individually are highly realistic, but
that are positioned improperly on the face. On the other hand, Matern et al. [13] utilized
certain facial features such as the contour of the face and the color of the iris, since these are
the features in which external manipulation is most easily distinguishable. They proposed
a pipeline of features to be checked for the detection of synthetic faces through image

Algorithms 2024, 17, 375 3 of 19

segmentation. Differences in eye color and iris size were the first to be looked at. In the
next stage, they examined possible missing areas in the teeth, eyes, and reflections. Finally,
they checked for irregularities at the nose tip and the face contour of the images.

Nataraj et al. [14] used both co-occurrence matrices and convolutional neural networks
(CNNs) for their research. They extracted co-occurrence matrices from the three color chan-
nels of an image in the pixel domain and trained a model using a deep CNN architecture. It
should be noted that the image was used as a whole instead of being split into its three color
channels. Nowroozi’s [15] approach was along the same line, but also worked across color
bands. In the spirit of exploiting the inconsistencies in color of the synthetic images, they
utilized not only the spatial co-occurrence matrices—like Nataraj—but also the cross-band
co-occurrences. These were then fed to a CNN too.

Other methods have also utilized aspects of the colors in GAN-generated images.
McCloskey and Albright [16] took advantage of the limitation of GANs in producing only
certain pixel values and in avoiding the creation of regions with low exposure or high
saturation by establishing two measurements that examine the correlation between color
channels and saturation. These differentiations in intensity and exposure are caused by the
normalization that is applied by GAN generators, which does not happen in natural images.
Finally, Li et al. [17] based their method on the premise that GAN-generated images differ
from natural ones in the chrominance components of the HSV and YCbCr color spaces,
especially in the residual domain. Consequently, they proposed a set of features for the
identification of synthetic images consisting of the co-occurrence matrices derived from the
residual images of multiple chroma components.

Other researchers noticed certain abnormalities that synthetic images display in the
frequency domain. Zhang et al. [18] identified fake images by detecting the spectral peaks
that show up because of the upsampling that takes place in many GAN architectures. This
upsampling causes a “checkerboard artifact” in the spatial domain, which translates into
replications of spectra in the frequency domain. This problem can be solved through a
lowpass filter, but if too many frequency coefficients are removed, the GAN-generated
image can become blurry, making its classification easier. Similarly, Frank et al. [19] also
utilized the artifacts caused by upsampling in the frequency domain. However, instead
of the Discrete Fourier Transform (DFT), they used the Discrete Cosine Transform (DCT).
In the DCT frequency domain, low frequencies contribute the most to a natural image.
Because of this, big parts of the image can be approximated by using low-frequency
functions. However, in GAN-generated images, this role is played by high frequencies,
which cause visual artifacts such as grid patterns, etc. The researchers took advantage of
these differences for the discrimination of deepfakes. On the other hand, Durall et al. [20]
proved that synthetic images do not have similar spectral distributions to real ones. Thus,
they proposed a detection method that takes into account power and energy spectral
distributions. Their research included a spectral regularization term that reduced the high-
frequency distortions of GAN-generated images. Thereby, the final loss of the generative
network was a weighted sum of the generator’s loss and the spectral loss.

A different solution to this problem was proposed by Gragnaniello et al. [21]. A
standard image recognition architecture model based on residual networks, ResNet50,
was chosen and subsequently trained with augmented data in compression and blurring
techniques. ResNet50 was selected due to its depth and utilization of skip connections,
which tackle the issue of vanishing gradients in extremely deep networks. Additionally, the
downsampling in the first layer was omitted for improved results, as was first suggested
by Boroumand et al. [22]. Wang et al. [23] followed a different approach to this by using
the semantic features of images. They attempted to differentiate between images generated
by GANs and natural images by utilizing differences and dissimilarities in the eyes of
synthetic faces that do not exist in natural faces. In order to solve this issue, they used a
Siamese Neural Network (SNN) architecture to extract high-level features regarding the
symmetry between the eyes; in real faces, the eyes share similar patterns, something which
is not true for faces generated by GANs. Fu et al. [24] exploited handcrafted features and,

Algorithms 2024, 17, 375 4 of 19

more specifically, the different textures and sensor noises exhibited by natural and synthetic
face images generated using GANs. They sent the image through two pipelines: the first
one examined the difference in texture through uniform local binary patterns (LBP) and
the second one checked sensor noise through subtractive pixel adjacency matrices (SPAM).

Cozzolino et al. [25] opted for a more generalized method. By replacing the residual
network of Gragnaniello [21] with a pre-trained vision language model (VLM), more specif-
ically, Contrastive Language–Image Pre-Training (CLIP), they were able to detect images
generated not only by GANs, but also Diffusion Models. Additionally, they performed
training with limited samples—only a few pairs of real and synthetic images were given to
a Support Vector Machine (SVM) classifier, unlike other methods. Finally, Dogoulis et al. [1]
took it to the next level by developing a technique that was able to make generalizations
across different concept classes, e.g., the model was trained on images of animals but tested
on flower images. They measured the quality of the images, ranked them, and chose the
images with the best quality score to be used for training. This way, the model focused less
on the artifacts that were in an image and used features that were irrelevant to its content,
leading to the aforementioned generalization.

The shared characteristic of all these deep learning-based detection methods, as well
as the more traditional approaches, is their reliance on exhaustive image analysis to extract
specific features that help distinguish synthetic images. Image compression operates in
a similar manner by analyzing and decomposing an image before reconstructing it. This
similarity inspired us to explore whether compression could also be the basis for a detection
technique. Moreover, since most images are already compressed in formats like JPEG, they
have already undergone analysis and are readily available for use.

3. Proposed Method

In this section, the theory on which our method is based is illustrated. The first part is
dedicated to the technique we used for image compression, which was recently presented
in [26], while in the second part we discuss the exploitation of the compressed images for
the detection of synthetic ones.

3.1. Image Compression

Several image compression techniques developed using deep learning adhere to the
principles of transform coding, involving transform, quantization, and entropy coding, but
they replace at least one step with a deep learning algorithm. These techniques operate
under the assumption that all codes are independent and identically distributed (IID).
The code is defined as the bottleneck of a neural network, i.e., the output of the network
which is of smaller size than all other layers. For example, in the case of autoencoders, the
bottleneck is the output of the encoder. These methods also rely on the assumption that all
the codes adhere to the same probability distribution to simplify entropy models [27]. The
transform is the step that is most frequently replaced.

In end-to-end image compression, compressed feature maps also retain certain spa-
tial correlation due to the restricted receptive field of convolutions. Therefore, entropy
modelling is used to further reduce redundant information in the entropy-constrained bot-
tleneck of basic neural networks. Compression is not limited to dimensionality reduction.
It also seeks to decrease the entropy of the code based on a prior probability model that
both the sender and receiver share, which is the entropy model. This entropy model is used
to estimate the conditional probability distribution of the latents and, in combination with
standard lossless entropy coding algorithms, such as arithmetic coding, to generate an even
more compressed bitstream [28]. Entropy modelling that seeks to estimate the code rate is
crucial in learning-based image compression techniques. According to Shannon’s source
coding theorem [29], for a discrete memoryless source that generates symbols from the set
y = {y0,..., yN}, the optimal code length for the representation of this source is given by

C = Ey[−log2P(yi)] = −∑N
i=0 P(yi)log2P(yi)] (1)

Algorithms 2024, 17, 375 5 of 19

where Ey denotes the expected value over the discrete random variable y and P(yi) is the
probability of symbol yi. Thus, it is imperative to accurately estimate the PDFs of the
bottlenecks in order to calculate the compression rate [27]. These end-to-end methods for
compressing images take the form of a variational autoencoder (VAE), which is a popular
probabilistic generative model paired with an approximate inference model [30], commonly
incorporating a hyperprior model [31] to convey latent representation distribution [32].
The VAE maps the image to a latent space, which is a space with fewer dimensions that
represents the image’s fundamental structure. Therefore, the VAE learns a representation
of the image and the hyperprior learns a latent representation of its entropy model. This is
achieved by sending side information, which involves the encoder transmitting additional
bits to the decoder to modify the entropy model and consequently minimize redundancies.
It is important to ensure that the amount of side information transmitted does not exceed
the decrease in the code length given in Equation (1), so that there is still compression of the
original image. The side information can act as a prior for the entropy model’s parameters,
effectively turning them into hyperpriors for the latent representation. Hyperpriors reflect
that neighboring elements in the latent representation typically exhibit similar variations in
their scales [31].

The goal of the compression model is the minimization of the average length of the
compressed data and the average distortion between the reconstructed image and the
original. This goal gives rise to the fundamental rate–distortion optimization problem at
the core of learned image compression. This is expressed by a cost function which such
models aim to minimize:

R + λD = Ex∼px
[
−log2 pŷ(q[ga(x)])

]
+ λEx∼px [d(x, gs(ŷ)] (2)

where λ is the coefficient that controls the required trade-off between the rate (R) and
the distortion (D), Ex∼px is the expected value, px is the unknown distribution of input
images, q denotes the process of rounding to the closest integer (uniform quantization),
y = ga(x) is the encoder, ŷ = q[y] represents the latents after the quantization, pŷ is a discrete
entropy model, and gs(x) is the decoder [33]. The term d represents the distortion value
under the given metric. The rate is the expected code length (bit rate) for the compressed
image representation, calculated as the cross-entropy between the marginal distribution
of the latents, i.e., the learned features of the set, and the learned entropy model [31].
The distortion refers to the expected difference between the original and reconstructed
image, evaluated using a norm or perceptual metric function like mean squared error
(MSE) or multi-scale structural similarity (MS-SSIM) [34]. The optimization problem can be
expressed in the form of a variational autoencoder.

To utilize gradient descent techniques to improve the model’s performance over
transform parameters, the problem requires relaxing, since quantization causes some of the
gradients to be close to zero across the board. Potential alternative methods that have been
studied involve replacing the gradient of the quantizer [35] and using additive uniform
noise instead of the quantizer during training [36]. In this work, we choose the second
approach, which reverts to real quantization when using the model for compression.

Figure 2 shows the operational diagram of the hyperprior model that serves as the
foundation for the present technique. The input image x is fed to the base encoder ga, and
the outputs y with spatially varying standard deviations are produced. These latents are
then fed to the hyper encoder ha, summarizing the distribution of standard deviations in
z, to which quantization or uniform noise addition and arithmetic encoding are applied
afterwards. After this process, ẑ is used as side information by the hyper decoder hs for
the estimation of the spatial distribution of standard deviations ŝ. The obtainment of ŝ
combined with the responses y is used for the acquirement of ŷ as well. Finally, ŷ is fed
to the base decoder gs, resulting in the reconstructed image x̂. The synthesis transform is
associated with the generative model, responsible for creating a reconstructed image from
the latent representation, while the analysis transform is connected to the inference model,
in charge of deducing the latent representation from the input image [31].

Algorithms 2024, 17, 375 6 of 19

Algorithms 2024, 17, x FOR PEER REVIEW 6 of 20

the estimation of the spatial distribution of standard deviations ̂s. The obtainment of ̂s
combined with the responses y is used for the acquirement of ̂y as well. Finally, ̂y is fed to
the base decoder gs, resulting in the reconstructed image ̂x. The synthesis transform is
associated with the generative model, responsible for creating a reconstructed image from
the latent representation, while the analysis transform is connected to the inference model,
in charge of deducing the latent representation from the input image [31].

Figure 2. Operational diagram of the hyperprior model. The squares indicate transformations of the
data and the arrows represent the direction of data flow. The boxes U|Q represent either the addi-
tion of uniform noise in the training phase (generating the vectors with a tilde) or quantization and
arithmetic coding in the testing phase (generating the vectors with a hat).

Our VAE network architecture closely resembles Ballé’s hyperprior architecture [31].
In an end-to-end approach, the common rectified linear unit function is replaced by a gen-
eralized divisive normalization (GDN) activation function [37], with each code assumed
to follow a zero-mean Gaussian distribution, while the deviation is estimated by the side
information network based on the hierarchical hyperprior. The bottlenecks of the base
encoder, as well as that of the hyper encoder, go separately through quantization and en-
tropy coding, before being combined again in the decoder. The VAE network is presented
in Figure 3, while Figure 4 contains the individual network layers.

Figure 2. Operational diagram of the hyperprior model. The squares indicate transformations of
the data and the arrows represent the direction of data flow. The boxes U|Q represent either the
addition of uniform noise in the training phase (generating the vectors with a tilde) or quantization
and arithmetic coding in the testing phase (generating the vectors with a hat).

Our VAE network architecture closely resembles Ballé’s hyperprior architecture [31].
In an end-to-end approach, the common rectified linear unit function is replaced by a
generalized divisive normalization (GDN) activation function [37], with each code assumed
to follow a zero-mean Gaussian distribution, while the deviation is estimated by the side
information network based on the hierarchical hyperprior. The bottlenecks of the base
encoder, as well as that of the hyper encoder, go separately through quantization and
entropy coding, before being combined again in the decoder. The VAE network is presented
in Figure 3, while Figure 4 contains the individual network layers.

Algorithms 2024, 17, x FOR PEER REVIEW 6 of 20

the estimation of the spatial distribution of standard deviations ̂s. The obtainment of ̂s
combined with the responses y is used for the acquirement of ̂y as well. Finally, ̂y is fed to
the base decoder gs, resulting in the reconstructed image ̂x. The synthesis transform is
associated with the generative model, responsible for creating a reconstructed image from
the latent representation, while the analysis transform is connected to the inference model,
in charge of deducing the latent representation from the input image [31].

Figure 2. Operational diagram of the hyperprior model. The squares indicate transformations of the
data and the arrows represent the direction of data flow. The boxes U|Q represent either the addi-
tion of uniform noise in the training phase (generating the vectors with a tilde) or quantization and
arithmetic coding in the testing phase (generating the vectors with a hat).

Our VAE network architecture closely resembles Ballé’s hyperprior architecture [31].
In an end-to-end approach, the common rectified linear unit function is replaced by a gen-
eralized divisive normalization (GDN) activation function [37], with each code assumed
to follow a zero-mean Gaussian distribution, while the deviation is estimated by the side
information network based on the hierarchical hyperprior. The bottlenecks of the base
encoder, as well as that of the hyper encoder, go separately through quantization and en-
tropy coding, before being combined again in the decoder. The VAE network is presented
in Figure 3, while Figure 4 contains the individual network layers.

Figure 3. The architecture of the VAE network. Q represents quantization, AE stands for the (lossless)
arithmetic encoder, and AD is the arithmetic decoder.

Algorithms 2024, 17, 375 7 of 19

Algorithms 2024, 17, x FOR PEER REVIEW 7 of 20

Figure 3. The architecture of the VAE network. Q represents quantization, AE stands for the (loss-
less) arithmetic encoder, and AD is the arithmetic decoder.

Figure 4. Compression network layers.

The final layer of the base encoder represents the code of the base autoencoder, with
its output channels determining the number of features that need to be condensed and
saved. Based on the trade-off between the rate and distortion, the proposed model learns
to disregard specific channels by producing an identical latent value in a deterministic
manner with a probability of 1, which, while computationally inefficient, needs no extra
entropy. This method allows for setting a code that is larger than what is needed, giving
the model the ability to determine the ideal number of channels for the best performance.
It has been found that a too small number of channels in the code might hinder rate–
distortion performance when training models for higher bit rates. However, a too big
number of channels does not affect compression performance negatively [28]. We train
our model for higher bit rates, so this is especially important. The higher bit rates are cho-
sen because, after extensive experiments, we reached the conclusion that higher distortion
metrics values have a positive impact on classification results. Finally, the last layer of the
base decoder requires three channels in order to produce RGB images.

One substantial difference between our approach [26] and that of Ballé [31] is that we
employ a different approach to represent the input images before feeding them to the net-
work. Initially, we separate the images into their three color channels (red, green and
blue). Then, as a preprocessing step, we apply the discrete wavelet transform (DWT) after
the color channels are split. Each of the three resulting images undergoes discrete wavelet
decomposition, resulting in four subimages corresponding to the approximation, horizon-
tal, vertical, and diagonal details. Consequently, for each image taken from the original

Figure 4. Compression network layers.

The final layer of the base encoder represents the code of the base autoencoder, with
its output channels determining the number of features that need to be condensed and
saved. Based on the trade-off between the rate and distortion, the proposed model learns
to disregard specific channels by producing an identical latent value in a deterministic
manner with a probability of 1, which, while computationally inefficient, needs no extra
entropy. This method allows for setting a code that is larger than what is needed, giving the
model the ability to determine the ideal number of channels for the best performance. It has
been found that a too small number of channels in the code might hinder rate–distortion
performance when training models for higher bit rates. However, a too big number of
channels does not affect compression performance negatively [28]. We train our model for
higher bit rates, so this is especially important. The higher bit rates are chosen because, after
extensive experiments, we reached the conclusion that higher distortion metrics values
have a positive impact on classification results. Finally, the last layer of the base decoder
requires three channels in order to produce RGB images.

One substantial difference between our approach [26] and that of Ballé [31] is that
we employ a different approach to represent the input images before feeding them to
the network. Initially, we separate the images into their three color channels (red, green
and blue). Then, as a preprocessing step, we apply the discrete wavelet transform (DWT)
after the color channels are split. Each of the three resulting images undergoes discrete
wavelet decomposition, resulting in four subimages corresponding to the approximation,
horizontal, vertical, and diagonal details. Consequently, for each image taken from the
original dataset, we obtain a total of 12 subimages. The post-processing step mirrors the
pre-processing step. The proposed pre-processing operations are depicted in Figure 5.

Algorithms 2024, 17, 375 8 of 19

Algorithms 2024, 17, x FOR PEER REVIEW 8 of 20

dataset, we obtain a total of 12 subimages. The post-processing step mirrors the pre-pro-
cessing step. The proposed pre-processing operations are depicted in Figure 5.

Figure 5. The pre-processing stage, consisting of channel splitting, normalization, DWT, and chan-
nel stacking.

The 3 subimages—one for each color channel— that represent the corresponding de-
tail are combined to form a 3-channel image that is then fed to the corresponding neural
network. This channel component stacking is different from our previous work [26] and
is shown in Figure 6. The selected wavelet is the biorthogonal 4.4 wavelet, which is com-
parable to the 9/7 wavelet used in JPEG2000 and is regarded as well suited for lossy image
compression [38].

Figure 6. Channel component stacking.

3.2. Synthetic Image Detection
Most techniques rely on image features and distinctive attributes to distinguish be-

tween real and synthetic images, as has been described in Section 2. However, we have
chosen to study image behavior after entropy-modelled compression. We utilize the qual-
ity metrics often seen in compression methods to decide the authenticity of an image. We
take advantage of the fact that synthetic images in general fare better after being com-
pressed and retain more of their original quality [39]. Furthermore, the quality of an image

Figure 5. The pre-processing stage, consisting of channel splitting, normalization, DWT, and chan-
nel stacking.

The 3 subimages—one for each color channel— that represent the corresponding
detail are combined to form a 3-channel image that is then fed to the corresponding neural
network. This channel component stacking is different from our previous work [26] and
is shown in Figure 6. The selected wavelet is the biorthogonal 4.4 wavelet, which is
comparable to the 9/7 wavelet used in JPEG2000 and is regarded as well suited for lossy
image compression [38].

Algorithms 2024, 17, x FOR PEER REVIEW 8 of 20

dataset, we obtain a total of 12 subimages. The post-processing step mirrors the pre-pro-
cessing step. The proposed pre-processing operations are depicted in Figure 5.

Figure 5. The pre-processing stage, consisting of channel splitting, normalization, DWT, and chan-
nel stacking.

The 3 subimages—one for each color channel— that represent the corresponding de-
tail are combined to form a 3-channel image that is then fed to the corresponding neural
network. This channel component stacking is different from our previous work [26] and
is shown in Figure 6. The selected wavelet is the biorthogonal 4.4 wavelet, which is com-
parable to the 9/7 wavelet used in JPEG2000 and is regarded as well suited for lossy image
compression [38].

Figure 6. Channel component stacking.

3.2. Synthetic Image Detection
Most techniques rely on image features and distinctive attributes to distinguish be-

tween real and synthetic images, as has been described in Section 2. However, we have
chosen to study image behavior after entropy-modelled compression. We utilize the qual-
ity metrics often seen in compression methods to decide the authenticity of an image. We
take advantage of the fact that synthetic images in general fare better after being com-
pressed and retain more of their original quality [39]. Furthermore, the quality of an image

Figure 6. Channel component stacking.

3.2. Synthetic Image Detection

Most techniques rely on image features and distinctive attributes to distinguish be-
tween real and synthetic images, as has been described in Section 2. However, we have
chosen to study image behavior after entropy-modelled compression. We utilize the quality
metrics often seen in compression methods to decide the authenticity of an image. We take
advantage of the fact that synthetic images in general fare better after being compressed
and retain more of their original quality [39]. Furthermore, the quality of an image post-
compression significantly affects the discernment of AI-generated images [40]. In addition,
since we created 4 subimages for each initial one, we have more information available.
While there are many ways of generating fake media, GAN-generated images are the most

Algorithms 2024, 17, 375 9 of 19

recent and the most common type of deepfakes [41–43], and we have focused our research
on them. However, Diffusion Models have also been popular recently, and we are keen to
explore these images too [44,45].

We found that the proposed learned compression technique worked differently on
the subimages representing the four details of each image produced through the discrete
wavelet transform. While approximation detail A loses a lot of its quality after the compres-
sion, diagonal detail D retains most of it. On the other hand, the horizontal and vertical
details are somewhere in the middle. However, there is also a difference in the way natural
and AI-generated images respond to the proposed model. Synthetic images appear to
handle the compression better, resulting in better-quality reconstructed images both for the
4 subimages and for the final RGB image. The reconstruction quality gap between natural
and artificial images is the biggest in the diagonal detail domain and the smallest for the
final reconstructed image. We exploit these differentiations by compressing the images and
utilizing the compression metrics for the discrimination of synthetic face images.

We use features of all four subimages as well as the final reconstructed image for
the classification process. The loss and the bit rate (bpp) are the first factors considered.
Additionally, the quality metrics have a significant impact, so MSE, MS-SSIM, peak signal-
to-noise ratio (PSNR), and structural similarity (SSIM) are also taken into account. This
leads to 6 features for each one of the 4 subimages. Additionally, the PSNR, SSIM, and
MS-SSIM of the reconstructed image are also used, making a total of 27 features for each
input image. However, every image is used by two models, A and B, so the number of
extracted features doubles. In conclusion, 54 features are extracted from each image and
used by a binary classifier. The features we use are illustrated in Figure 7.

Algorithms 2024, 17, x FOR PEER REVIEW 9 of 20

post-compression significantly affects the discernment of AI-generated images [40]. In ad-
dition, since we created 4 subimages for each initial one, we have more information avail-
able. While there are many ways of generating fake media, GAN-generated images are
the most recent and the most common type of deepfakes [41–43], and we have focused
our research on them. However, Diffusion Models have also been popular recently, and
we are keen to explore these images too [44,45].

We found that the proposed learned compression technique worked differently on
the subimages representing the four details of each image produced through the discrete
wavelet transform. While approximation detail A loses a lot of its quality after the com-
pression, diagonal detail D retains most of it. On the other hand, the horizontal and verti-
cal details are somewhere in the middle. However, there is also a difference in the way
natural and AI-generated images respond to the proposed model. Synthetic images ap-
pear to handle the compression better, resulting in better-quality reconstructed images
both for the 4 subimages and for the final RGB image. The reconstruction quality gap be-
tween natural and artificial images is the biggest in the diagonal detail domain and the
smallest for the final reconstructed image. We exploit these differentiations by compress-
ing the images and utilizing the compression metrics for the discrimination of synthetic
face images.

We use features of all four subimages as well as the final reconstructed image for the
classification process. The loss and the bit rate (bpp) are the first factors considered. Ad-
ditionally, the quality metrics have a significant impact, so MSE, MS-SSIM, peak signal-
to-noise ratio (PSNR), and structural similarity (SSIM) are also taken into account. This
leads to 6 features for each one of the 4 subimages. Additionally, the PSNR, SSIM, and
MS-SSIM of the reconstructed image are also used, making a total of 27 features for each
input image. However, every image is used by two models, A and B, so the number of
extracted features doubles. In conclusion, 54 features are extracted from each image and
used by a binary classifier. The features we use are illustrated in Figure 7.

Figure 7. Features used for the discrimination of synthetic images. For each image, 27 features are
extracted from the model trained on real images and 27 are extracted from the model trained on AI-
generated images.

The compression model is trained twice, once on a real and once on a synthetic da-
taset. For this reason, two identical models (Model A and Model B) are used. Model A is
trained on real images and Model B is trained on fake ones. They need to be tested on both
types of images, real and synthetic, since they work differently with these types of inputs.
Thus, the testing datasets are split in half. The first half, real dataset 1 and synthetic dataset
1, are used for the evaluation of the two compression models. The features extracted from
this process are given as inputs to the classifier for its training. The next step includes the
same process for the two models with the other half of the testing dataset, only this time

Figure 7. Features used for the discrimination of synthetic images. For each image, 27 features are
extracted from the model trained on real images and 27 are extracted from the model trained on
AI-generated images.

The compression model is trained twice, once on a real and once on a synthetic dataset.
For this reason, two identical models (Model A and Model B) are used. Model A is trained
on real images and Model B is trained on fake ones. They need to be tested on both types
of images, real and synthetic, since they work differently with these types of inputs. Thus,
the testing datasets are split in half. The first half, real dataset 1 and synthetic dataset 1,
are used for the evaluation of the two compression models. The features extracted from
this process are given as inputs to the classifier for its training. The next step includes the
same process for the two models with the other half of the testing dataset, only this time
the output is used for the evaluation of the discriminator. This procedure is summarized in
Process 1. After repeated experiments, we came to the conclusion that increasing the depth
of the classifier does not improve the classification performance. Thus, an energy-efficient,
not computationally complex option was chosen. The classifier is quite basic, and its layers

Algorithms 2024, 17, 375 10 of 19

are shown in Table 1.

Process 1. Discrimination of synthetic images

Step 1: Train compression model A on a real dataset
Train compression model B on a synthetic dataset

Step 2: Evaluate model A on real dataset 1
Evaluate model A on synthetic dataset 1
Evaluate model B on real dataset 1
Evaluate model B on synthetic dataset 1

Step 3: Train classifier on the features extracted from Step 2
Step 4: Evaluate model A on real dataset 2

Evaluate model A on synthetic dataset 2
Evaluate model B on real dataset 2
Evaluate model B on synthetic dataset 2

Step 5: Evaluate classifier on the features extracted from Step 4

Table 1. Classifier network layers.

Classifier

Dense 12
ReLU

Dense 8
ReLU

Dense 1
Sigmoid

4. Methodology and Experimental Results

In Section 4.1, we detail the datasets that were used for the experiments. A total of
4 datasets consisting of 38,000 images were used during our research. In Section 4.2, we
explain the hyperparameters set for the training of our compression-based classification
model. Finally, in Section 4.3, we discuss the performance of the present work and its
robustness against image manipulations.

4.1. Datasets

A collection of 12,000 real face images was obtained from the CelebA_HQ dataset [46].
Of these, 10,000 images were used for training, constituting the real training dataset
mentioned in Process 1, and 2000 images were used for testing. Half of these test images
made up real dataset 1 and the other half made up real dataset 2. Several generative models
were taken into account for the artificial face images, and we eventually decided to use
the StyleGAN and StyleGAN2 datasets for our GAN-generated datasets. The StyleGAN
subset [47] of synthetic images consists of 12,000 images in total; 10,000 images were used to
train the model, comprising the synthetic training dataset, and 2000 images were used for
testing. These testing images made up the synthetic datasets 1 and 2 mentioned in Process 1.
We used the official release of the StyleGAN dataset and opted for a truncation parameter
value of 0.5 to enhance the dataset’s variety. When the truncation parameter fades to 0, all
faces converge to the “mean” face of FFHQ (the dataset which StyleGAN is trained on). This
face is consistent across all trained networks, and interpolating towards it never appears
to introduce artifacts. When applying higher scaling to styles, the result is the opposite,
or “anti-face” [47]. The same logic is followed with the StyleGAN2 dataset [48]. We made
these choices because StyleGAN and StyleGAN2 are trained on the FFHQ dataset [47],
so there are no common aspects between the natural and artificial images. Additionally,
we used an artificial dataset produced with stable diffusion for the testing in order to see
whether the proposed method responds well to different kinds of synthetic images. This
made up the final synthetic datasets 1 and 2 we used for testing in our experiments. We

Algorithms 2024, 17, 375 11 of 19

tested these datasets with models trained both on StyleGAN and on StyleGAN2. Table 2
presents a summary of the datasets utilized in our research.

Table 2. Face datasets used for training and testing.

Datasets CelebA_HQ StyleGAN StyleGAN2 Stable Diffusion

Class Real Synthetic Synthetic Synthetic
Training 10,000 10,000 10,000 None
Testing 2000 2000 2000 2000

4.2. Training Setting

All the images we used had a resolution of 1024 × 1024 pixels, and we cropped a
square in the center of a size of 504 × 504 pixels. The same cropping was applied in both
training and testing. The compression network could only handle images of a size larger
than 256 × 256 pixels. This limitation combined with the dimensionality reduction caused
by the DWT meant that the smallest image size we could use was 504 × 504 pixels. Resizing
would be required for the classification of low-resolution images. However, resizing reduces
the accuracy of the proposed model, so it inadvisable unless necessary. More details are
given in Section 4.3.2. The cross-entropy loss function was used to train the network, along
with the Adam optimizer [49]. Higher-quality images give better classification results,
so we chose a value of 1000 for λ. The batch size was set to 8 and the learning rate had
a steady value of 0.0001 for 250 epochs during training. Such a large number of epochs
for the compression training was chosen since it is often beneficial to image compression
methods [50,51]. On the other hand, the focus here was the discrimination of synthetic
images, so 250 was a good compromise between the quality of the compressed image and
the computational complexity. The binary classifier trained for 300 epochs with the batch
size set to 16. While it is a simple network, it needs many epochs because of the number of
features it takes as inputs. The Python3 environment and the Tensorflow library were used.
The code is available on https://github.com/sof-il/SyntheticFaceDiscriminitor (accessed
on 21 August 2024). Both the training and the testing of the model were implemented on
an NVIDIA GeForce RTX 3080, 11 GB.

4.3. Results
4.3.1. Performance Analysis

In this analysis, we compare the suggested approach with one of the best available
methods for identifying GAN-produced images. Gragnaniello et al. [21] reviewed multiple
methods in their work. We focus on the variant of ResNet50 that involves the removal of
downsampling from the first layer. This is a technique that is still used by many researchers
to compare their results, since it works exceptionally well for GAN-generated images and
is still unbeatable in some cases [15,25,52,53].

The metrics we used for the evaluation of our binary classifier were accuracy, precision,
and recall (also known as True Positive Rate—TPR), as well as the area under the curve
(AUC) of the receiver operating characteristic (ROC) curve. The first three metrics are
defined in Equations (3)–(5), utilizing True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN). Unlike accuracy, and like cross-entropy losses,
AUC evaluates all the operational points of the model using a Riemann sum. The AUC is
calculated using the height of the recall values with the False Positive Rate (FPR). This is
defined in Equation (6). A linearly spaced set of 200 classification thresholds is used for the
computation of TPR-FPR pairs [54]. The ROC curve illustrates the trade-off between these
two metrics. The left side of the curve represents the more “confident” thresholds—a higher
threshold results in lower recall and fewer False Positives. On the other hand, the right side
of the curve corresponds to the “less strict” thresholds—a lower threshold increases both
the recall and the False Positives. The ROC AUC is calculated by measuring the area under
the ROC curve and has values from 0 to 1, though this is often changed to percentage form

https://github.com/sof-il/SyntheticFaceDiscriminitor

Algorithms 2024, 17, 375 12 of 19

for ease. In Figure 8, we provide a graphical example of obtaining the ROC curve and the
AUC from a chosen experiment.

accuracy =
TP + TN

TP + FP + TN + FN
(3)

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

FPR =
FP

FP + TN
(6)

Algorithms 2024, 17, x FOR PEER REVIEW 12 of 20

these two metrics. The left side of the curve represents the more “confident” thresholds—
a higher threshold results in lower recall and fewer False Positives. On the other hand, the
right side of the curve corresponds to the “less strict” thresholds—a lower threshold in-
creases both the recall and the False Positives. The ROC AUC is calculated by measuring
the area under the ROC curve and has values from 0 to 1, though this is often changed to
percentage form for ease. In Figure 8, we provide a graphical example of obtaining the
ROC curve and the AUC from a chosen experiment. 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (3)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (4)

𝑟𝑒𝑐𝑎𝑙𝑙 = (5)

𝐹𝑃𝑅 = (6)

Figure 8. The ROC curve represents the performance of our binary classifier on a StyleGAN syn-
thetic image after the application of a 3 × 3 median filter at different classification thresholds. The
default threshold is 0.5, but to obtain the ROC curve we use values from 0 to 1. The calculation of
the AUC metric requires the measurement of the area under the ROC curve (0.961).

The initial experiments focus on evaluating the overall efficacy of the techniques be-
ing tested in discriminating synthetic face images. The results are given in Tables 3 and 4.

Figure 8. The ROC curve represents the performance of our binary classifier on a StyleGAN synthetic
image after the application of a 3 × 3 median filter at different classification thresholds. The default
threshold is 0.5, but to obtain the ROC curve we use values from 0 to 1. The calculation of the AUC
metric requires the measurement of the area under the ROC curve (0.961).

The initial experiments focus on evaluating the overall efficacy of the techniques being
tested in discriminating synthetic face images. The results are given in Tables 3 and 4.

The accuracy consistently remains above 95% regardless of the generation method
of the dataset. As we can see in Tables 3 and 4, we achieve better results with the Style-
GAN dataset than StyleGAN2, for which our results are within 1% of those of ResNet50.
Although for StyleGAN2 the accuracy of the detection is worse, it is still above 95%. The
big difference between the results of the proposed method and ResNet50 comes when they
are tested on images generated with stable diffusion. In this case, our compression-based
method surpasses Resnet50 by far on all fronts. While Resnet50 achieves 49.70% accuracy,
successfully detecting only real images, our technique does even better than with the
GAN-generated datasets and reaches 99.00% and 99.10% accuracy. The precision and recall
results are equally good, reaching almost 100%.

Algorithms 2024, 17, 375 13 of 19

Table 3. Accuracy (ACC) and AUC results.

Dataset ACC/AUC

Our Method ResNet50

StyleGAN 98.90/100.0 99.70/100.0
StyleGAN2 95.30/99.0 99.70/100.0

Stable Diffusion (our model trained on StyleGAN) 99.00/100.0 49.70/32.50
Stable Diffusion (our model trained on StyleGAN2) 99.10/99.90 49.70/32.50

Bold entries indicate the best results for each scenario.

Table 4. Precision and recall results.

Dataset Precision/Recall

Our Method ResNet50

StyleGAN 98.60/99.20 100.0/99.40
StyleGAN2 95.20/95.40 100.0/99.40

Stable Diffusion (our model trained on StyleGAN) 99.20/99.50 49.84/99.40
Stable Diffusion (our model trained on StyleGAN2) 98.81/99.40 49.84/99.40

Bold entries indicate the best results for each scenario.

4.3.2. Robustness

We experimented with post-processing operations to see how well the proposed
method fares against image manipulation and examine its robustness. The results are
reported in Tables 5 and 6. There are also visual representations of the exported data in
Figures 9 and 10.

Table 5. Accuracy (ACC) and AUC results for “attacked” images under various image processing operations.

Processing
Operation ACC/AUC

StyleGAN StyleGAN2
Stable Diffusion (Our

Model Trained on
StyleGAN)

Stable Diffusion (Our
Model Trained on

StyleGAN2)

Our
Method ResNet50 Our

Method ResNet50 Our
Method ResNet50 Our

Method ResNet50

Gaussian
noise

(σ2 = 0.01)
97.90/99.30 64.60/58.30 95.30/98.90 64.60/64.80 98.30/99.50 49.90/54.20 97.70/99.80 49.90/54.20

Median
filter

(3 × 3)
88.20/97.30 99.90/99.90 93.50/97.90 99.80/99.90 95.30/99.10 49.90/51.10 96.40/98.90 49.90/51.10

JPEG
(QF = 90) 94.00/97.10 99.70/99.80 95.30/98.80 99.70/99.80 98.60/99.90 49.70/42.60 98.30/99.80 49.70/42.60

Cropping
(512 × 512) 98.90/100.0 99.30/98.70 95.30/99.0 99.20/98.70 99.00/100.0 49.30/39.50 99.10/99.90 49.30/39.50

Resize (0.5) 98.40/99.60 100.0/99.90 94.40/98.80 88.60/91.30 98.50/99.80 50.00/50.80 99.20/99.90 50.00/50.80

Resize (1.5) 94.10/98.20 100.0/100.0 92.30/98.10 100.0/100.0 94.70/98.60 50.00/50.40 93.90/98.90 50.00/50.40

Bold entries indicate the best results for each scenario.

The results clearly show that the proposed method is more effective for StyleGAN
compared to StyleGAN2, but this does not hold true for the processed images. After
post-processing, the second dataset seems to fare better on the deepfake detection front.
This is interesting, given the fact that StyleGAN2 is more recent, and thus the generated
face images are more realistic. We observe that our model is less impacted by Gaussian

Algorithms 2024, 17, 375 14 of 19

noise compared to ResNet50. The cropping also has no effect whatsoever, which was to be
expected since we used a cropped version of the image anyway. The median filter affects
our model more than ResNet50, with a 10% decline in StyleGAN accuracy. On the other
hand, on StyleGAN2 it seems to work much better, with a less than 2% loss of accuracy.
The proposed method also responds well to JPEG compression. However, the present
work surpasses the performance of ResNet50 for the stable-diffusion-generated dataset for
all types of “attacks”. Our technique maintains a stable performance of high accuracy, in
most cases more than 90%. ResNet50, on the other hand, once again only detects real face
images, failing in recognizing the diffusion-generated ones. In Figure 11, the performance
of different JPEG quality factors is given. It is interesting that while for StyleGAN2 our
method has a consistent performance, for StyleGAN it seems to improve as the quality
factor increases.

Table 6. Precision and recall results for “attacked” images under various image processing operations.

Processing
Operation Precision/Recall

StyleGAN StyleGAN2
Stable Diffusion (Our

Model Trained on
StyleGAN)

Stable Diffusion (Our
Model Trained on

StyleGAN2_

Our
Method ResNet50 Our

Method ResNet50 Our
Method ResNet50 Our

Method ResNet50

Gaussian
noise

(σ2 = 0.01)
97.60/98.20 100.0/29.20 94.50/96.20 100.0/29.20 98.99/97.60 49.95/99.80 99.18/96.20 49.95/99.80

Median
filter

(3 × 3)
96.40/79.40 100.0/99.80 91.90/95.40 100.0/99.80 95.21/95.40 49.95/99.80 95.14/97.80 49.95/99.80

JPEG
(QF = 90) 92.64/95.60 100.0/99.40 94.50/96.20 100.0/99.40 98.80/98.40 49.84/99.40 98.20/98.40 49.84/99.40

Cropping
(512 × 512) 98.60/99.20 100.0/98.60 95.20/95.40 100.0/98.60 99.20/99.50 49.65/98.60 98.81/99.40 49.30/98.60

Resize (0.5) 98.99/97.80 100.0/100.0 92.05/97.20 81.43/100.0 98.50/99.80 50.00/100.00 99.20/99.90 50.00/100.00

Resize (1.5) 93.00/97.40 100.0/100.0 92.50/93.20 100.0/100.0 94.60/94.80 50.00/100.00 93.10/93.60 50.00/100.00

Bold entries indicate the best results for each scenario.

As was stated above, the proposed method performs significantly better than ResNet50
when Gaussian noise is added to the images. This is caused by the nature of the “attack”.
Gaussian noise affects the DWT of an image in several ways, primarily through the in-
troduction of high-frequency components. It typically manifests as random variations in
pixel values, predominantly affecting the high-frequency components of an image. During
the DWT process, these high-frequency components are mapped to the detail coefficients.
Consequently, the presence of Gaussian noise increases the magnitude of these detail co-
efficients. The diagonal detail that contains the high-frequency coefficients is extremely
important to our method, as it displays the biggest variance between real and synthetic
images. As a result, our compression-based technique performs much better than ResNet50
when faced with Gaussian noise. In order to prove this point even further, Figure 12 shows
the behavior of both techniques when the images are “attacked” with Gaussian noise of
different variances σ2, with the mean value being consistently zero.

Algorithms 2024, 17, 375 15 of 19Algorithms 2024, 17, x FOR PEER REVIEW 15 of 20

Figure 9. Accuracy, AUC, precision, and recall results comparison.

Figure 10. Accuracy, AUC, precision, and recall results comparison for “attacked” images resized
by a factor of 0.5.

The results clearly show that the proposed method is more effective for StyleGAN
compared to StyleGAN2, but this does not hold true for the processed images. After post-
processing, the second dataset seems to fare better on the deepfake detection front. This is
interesting, given the fact that StyleGAN2 is more recent, and thus the generated face im-
ages are more realistic. We observe that our model is less impacted by Gaussian noise
compared to ResNet50. The cropping also has no effect whatsoever, which was to be ex-
pected since we used a cropped version of the image anyway. The median filter affects
our model more than ResNet50, with a 10% decline in StyleGAN accuracy. On the other
hand, on StyleGAN2 it seems to work much better, with a less than 2% loss of accuracy.
The proposed method also responds well to JPEG compression. However, the present
work surpasses the performance of ResNet50 for the stable-diffusion-generated dataset
for all types of “attacks”. Our technique maintains a stable performance of high accuracy,
in most cases more than 90%. ResNet50, on the other hand, once again only detects real
face images, failing in recognizing the diffusion-generated ones. In Figure 11, the

Figure 9. Accuracy, AUC, precision, and recall results comparison.

Algorithms 2024, 17, x FOR PEER REVIEW 15 of 20

Figure 9. Accuracy, AUC, precision, and recall results comparison.

Figure 10. Accuracy, AUC, precision, and recall results comparison for “attacked” images resized
by a factor of 0.5.

The results clearly show that the proposed method is more effective for StyleGAN
compared to StyleGAN2, but this does not hold true for the processed images. After post-
processing, the second dataset seems to fare better on the deepfake detection front. This is
interesting, given the fact that StyleGAN2 is more recent, and thus the generated face im-
ages are more realistic. We observe that our model is less impacted by Gaussian noise
compared to ResNet50. The cropping also has no effect whatsoever, which was to be ex-
pected since we used a cropped version of the image anyway. The median filter affects
our model more than ResNet50, with a 10% decline in StyleGAN accuracy. On the other
hand, on StyleGAN2 it seems to work much better, with a less than 2% loss of accuracy.
The proposed method also responds well to JPEG compression. However, the present
work surpasses the performance of ResNet50 for the stable-diffusion-generated dataset
for all types of “attacks”. Our technique maintains a stable performance of high accuracy,
in most cases more than 90%. ResNet50, on the other hand, once again only detects real
face images, failing in recognizing the diffusion-generated ones. In Figure 11, the

Figure 10. Accuracy, AUC, precision, and recall results comparison for “attacked” images resized by
a factor of 0.5.

Algorithms 2024, 17, 375 16 of 19

Algorithms 2024, 17, x FOR PEER REVIEW 16 of 20

performance of different JPEG quality factors is given. It is interesting that while for Style-
GAN2 our method has a consistent performance, for StyleGAN it seems to improve as the
quality factor increases.

Figure 11. Accuracy of the proposed technique and ResNet50 when JPEG compression with various
quality factors is applied to the image.

As was stated above, the proposed method performs significantly better than Res-
Net50 when Gaussian noise is added to the images. This is caused by the nature of the
“attack”. Gaussian noise affects the DWT of an image in several ways, primarily through
the introduction of high-frequency components. It typically manifests as random varia-
tions in pixel values, predominantly affecting the high-frequency components of an im-
age. During the DWT process, these high-frequency components are mapped to the detail
coefficients. Consequently, the presence of Gaussian noise increases the magnitude of
these detail coefficients. The diagonal detail that contains the high-frequency coefficients
is extremely important to our method, as it displays the biggest variance between real and
synthetic images. As a result, our compression-based technique performs much better
than ResNet50 when faced with Gaussian noise. In order to prove this point even further,
Figure 12 shows the behavior of both techniques when the images are “attacked” with
Gaussian noise of different variances σ2, with the mean value being consistently zero.

Figure 12. Accuracy of the proposed method and ResNet50 when Gaussian noise of different vari-
ance values is applied to the image.

Figure 11. Accuracy of the proposed technique and ResNet50 when JPEG compression with various
quality factors is applied to the image.

Algorithms 2024, 17, x FOR PEER REVIEW 16 of 20

performance of different JPEG quality factors is given. It is interesting that while for Style-
GAN2 our method has a consistent performance, for StyleGAN it seems to improve as the
quality factor increases.

Figure 11. Accuracy of the proposed technique and ResNet50 when JPEG compression with various
quality factors is applied to the image.

As was stated above, the proposed method performs significantly better than Res-
Net50 when Gaussian noise is added to the images. This is caused by the nature of the
“attack”. Gaussian noise affects the DWT of an image in several ways, primarily through
the introduction of high-frequency components. It typically manifests as random varia-
tions in pixel values, predominantly affecting the high-frequency components of an im-
age. During the DWT process, these high-frequency components are mapped to the detail
coefficients. Consequently, the presence of Gaussian noise increases the magnitude of
these detail coefficients. The diagonal detail that contains the high-frequency coefficients
is extremely important to our method, as it displays the biggest variance between real and
synthetic images. As a result, our compression-based technique performs much better
than ResNet50 when faced with Gaussian noise. In order to prove this point even further,
Figure 12 shows the behavior of both techniques when the images are “attacked” with
Gaussian noise of different variances σ2, with the mean value being consistently zero.

Figure 12. Accuracy of the proposed method and ResNet50 when Gaussian noise of different vari-
ance values is applied to the image.
Figure 12. Accuracy of the proposed method and ResNet50 when Gaussian noise of different variance
values is applied to the image.

5. Discussion

In this research, we performed thorough tests to assess the proposed method for the
discrimination of synthetic face images. We used a deep learning-based image compression
technique to detect synthetic face images. Additionally, we utilized the discrete wavelet
transform to improve the detection process. This was established by noting that the
diagonal details of a real and a synthetic face image display significant differences. On the
other hand, the approximation details of real and synthetic faces are fairly similar, while
the horizontal and vertical details have some differences, but not enough to be considered
noteworthy. Instead of using image-specific features for this process, we compressed
face images and measured the quality of their reconstruction, thus revealing their real or
synthetic origin.

These experiments showed some interesting results. We proved that not only is it
possible to use compression for deepfake detection, but the accuracy of such an attempt is
comparable to that of GAN-based methods on GAN-generated faces. The robustness of the
proposed technique was also tested against several image processing operations, proving
beneficial against certain types of attacks, e.g., Gaussian noise. An important benefit of this
approach is the reduced size of the neural networks needed for its implementation. While
ResNet50—to which we compare our technique—is very efficient, it actually uses 49 layers.

Algorithms 2024, 17, 375 17 of 19

On the other hand, the proposed technique requires only 30 layers, 24 of which are used
for the compression of the images and the other 6 for the classification. Consequently, there
is lower computational complexity, which is highly beneficial. Finally, our method can
successfully identify artificial images created using stable diffusion, in contrast to ResNet50,
which seems to do well only on GAN-generated images. This means that the proposed
method is more universal in regard to the images it can correctly classify.

6. Conclusions

In the present work, a novel solution to the problem of synthetic face discrimination is
proposed. A learned image compression technique was used to detect synthetic images by
evaluating compressed images’ quality. The research on this gives promising results, with
accuracy close to 99% in many cases. A comparison to ResNet50 shows that our technique
has accuracy results within 1% of this state-of-the-art method for images produced by
GANs, and is far better for stable-diffusion-generated ones, while having lower complexity.
We also experimented with some image processing operations to see how such “attacks”
affect the model’s accuracy. Some of these operations proved to be ineffective against the
proposed method, such as cropping, while others made the classification process more
difficult. In conclusion, the use of compression for the discrimination of synthetic face
images is a route that has not been explored yet. However, it has proven to be highly
effective and deserves future study.

Author Contributions: Conceptualization, A.S.; methodology, S.I.; software, S.I. and P.T.; validation,
A.S., D.A. and P.T.; formal analysis, S.I., A.S., D.A. and P.T.; investigation, S.I., D.A. and A.S.; resources,
A.S.; data curation, S.I.; writing—original draft preparation, S.I.; writing—review and editing, A.S.,
D.A., and P.T.; visualization, A.S., D.A., P.T. and S.I.; supervision, A.S. and D.A.; project administration,
A.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on Github at https://
github.com/sof-il/SyntheticFaceDiscriminitor; https://github.com/NVlabs/stylegan (accessed on 21
August 2024); https://github.com/NVlabs/stylegan2 (accessed on 21 August 2024); https://github.
com/tkarras/progressive_growing_of_gans (accessed on 21 August 2024) and https://github.com/
tobecwb/stable-diffusion-face-dataset (accessed on 21 August 2024) [40–42].

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Dogoulis, P.; Kordopatis-Zilos, G.; Kompatsiaris, I.; Papadopoulos, S. Improving Synthetically Generated Image Detection in

Cross-Concept Settings. In Proceedings of the 2nd ACM International Workshop on Multimedia AI against Disinformation
(MAD ‘23), Thessaloniki, Greece, 12–15 June 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 28–35.
[CrossRef]

2. Ramesh, A.; Dhariwal, P.; Nichol, A.; Chu, C.; Chen, M. Hierarchical text-conditional image generation with clip latents. arXiv
2022, arXiv:2204.06125.

3. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

4. Karras, T.; Aittala, M.; Laine, S.; Härkönen, E.; Hellsten, J.; Lehtinen, J.; Aila, T. Alias-free generative adversarial networks. In Adv.
Neural Inf. Process. Syst. 2021, 34, 852–863.

5. Dhariwal, P.; Nichol, A. Diffusion models beat GANs on image synthesis. Adv. Neural Inf. Process. Syst. 2021, 34, 8780–8794.
6. Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-resolution image synthesis with latent diffusion models. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022.
[CrossRef]

7. Farid, H. Photo Forensics; MIT Press: Cambridge, MA, USA, 2016.
8. Guo, H.; Hu, S.; Wang, X.; Chang, M.C.; Lyu, S. Eyes Tell All: Irregular Pupil Shapes Reveal GAN-Generated Faces. In Proceedings

of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022;
pp. 2904–2908. [CrossRef]

9. Farid, H. Lighting (In)consistency of Paint by Text. arXiv 2022, arXiv:2207.13744.
10. Farid, H. Perspective (In)consistency of Paint by Text. arXiv 2022, arXiv:2206.14617.

https://github.com/sof-il/SyntheticFaceDiscriminitor
https://github.com/sof-il/SyntheticFaceDiscriminitor
https://github.com/NVlabs/stylegan2
https://github.com/tkarras/progressive_growing_of_gans
https://github.com/tkarras/progressive_growing_of_gans
https://github.com/tobecwb/stable-diffusion-face-dataset
https://github.com/tobecwb/stable-diffusion-face-dataset
https://doi.org/10.1145/3592572.3592846
https://doi.org/10.1145/3422622
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/ICASSP43922.2022.9746597

Algorithms 2024, 17, 375 18 of 19

11. Corvi, R.; Cozzolino, D.; Poggi, G.; Nagano, K.; Verdoliva, L. Intriguing Properties of Synthetic Images: From Generative
Adversarial Networks to Diffusion Models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, Vancouver, BC, Canada, 17–24 June 2023; pp. 973–982.

12. Yang, X.; Li, Y.; Qi, H.; Lyu, S. Exposing GAN-synthesized Faces Using Landmark Locations. In Proceedings of the ACM
Workshop on Information Hiding and Multimedia, Paris France, 3–5 July 2019; Association for Computing Machinery: New York,
NY, USA, 2019; pp. 113–118. [CrossRef]

13. Matern, F.; Riess, C.; Stamminger, M. Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations. In Proceedings of
the 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW), Waikoloa, HI, USA, 7–11 January 2019; pp. 83–92.
[CrossRef]

14. Nataraj, L.; Mohammed, T.M.; Manjunath, B.S.; Chandrasekaran, S.; Flenner, A.; Bappy, J.H.; Roy-Chowdhury, A. Detecting GAN
generated Fake Images using Co-occurrence Matrices. Electron. Imaging 2019, 2019, 532-1–532-7. [CrossRef]

15. Nowroozi, E.; Conti, M.; Mekdad, Y. Detecting High-Quality GAN-Generated Face Images using Neural Networks. arXiv 2022,
arXiv:2203.01716.

16. McCloskey, S.; Albright, M. Detecting GAN-Generated Imagery Using Saturation Cues. In Proceedings of the 2019 IEEE
International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 4584–4588.

17. Li, H.; Li, B.; Tan, S.; Huang, J. Identification of deep network generated images using disparities in color. Signal Process. 2020,
174, 107616. [CrossRef]

18. Zhang, X.; Karaman, S.; Chang, S.-F. Detecting and Simulating Artifacts in GAN Fake Images. In Proceedings of the 2019 IEEE
International Workshop on Information Forensics and Security (WIFS), Delft, The Netherlands, 9–12 December 2019; pp. 1–6.
[CrossRef]

19. Frank, J.; Eisenhofer, T.; Schönherr, L.; Fischer, A.; Kolossa, D.; Holz, T. Leveraging frequency analysis for deep fake image
recognition. arXiv 2020, arXiv:2003.08685.

20. Durall, R.; Keuper, M.; Keuper, J. Watch Your Up-Convolution: CNN Based Generative Deep Neural Networks Are Failing to
Reproduce Spectral Distributions. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 7887–7896. [CrossRef]

21. Gragnaniello, D.; Cozzolino, D.; Marra, F.; Poggi, G.; Verdoliva, L. Are GAN Generated Images Easy to Detect? A Critical Analysis
of the State-Of-The-Art. In In Proceedings of the 2021 IEEE International Conference on Multimedia and Expo (ICME), Shenzhen,
China, 5–9 July 2021; pp. 1–6. [CrossRef]

22. Boroumand, M.; Chen, M.; Fridrich, J. Deep Residual Network for Steganalysis of Digital Images. IEEE Trans. Inf. Forensics Secur.
2019, 14, 1181–1193. [CrossRef]

23. Wang, J.; Tondi, B.; Barni, M. An Eyes-Based Siamese Neural Network for the Detection of GAN-Generated Face Images. Front.
Signal Process. 2022, 2, 918725. [CrossRef]

24. Fu, T.; Xia, M.; Yang, G. Detecting GAN-generated face images via hybrid texture and sensor noise-based features. Multimed.
Tools Appl. 2022, 81, 26345–26359. [CrossRef]

25. Cozzolino, D.; Poggi, G.; Corvi, R.; Nießner, M.; Verdoliva, L. Raising the Bar of AI-generated Image Detection with CLIP. arXiv
2023, arXiv:2312.00195. [CrossRef]

26. Iliopoulou, S.; Tsinganos, P.; Ampeliotis, D.; Skodras, A. Learned Image Compression with Wavelet Preprocessing for Low Bit
Rates. In Proceedings of the 2023 24th International Conference on Digital Signal Processing (DSP), Rhodes, Greece, 11–13 June
2023; pp. 1–5. [CrossRef]

27. Li, M.; Zhang, K.; Li, J.; Zuo, W.; Timofte, R.; Zhang, D. Learning Context-Based Nonlocal Entropy Modeling for Image
Compression. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 1132–1145. [CrossRef] [PubMed]

28. Minnen, D.; Ballé, J.; Toderici, G.D. Joint Autoregressive and Hierarchical Priors for Learned Image Compression. Adv. Neural Inf.
Process. Syst. 2018, 31, 10771–10780.

29. Cover, T.M.; Thomas, J.A. Data Compression. In Elements of Information Theory, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA,
2021; pp. 103–142.

30. Toderici, G.; Vincent, D.; Johnston, N.; Hwang, S.; Minnen, D.; Shor, J.; Covell, M. “Full resolution image compression with
recurrent neural networks. In Proceedings of the 2017 IEEE Conference on Computer Vision Pattern Recognit. (CVPR), Honolulu,
HI, USA, 21–26 July 2017; pp. 5435–5443.

31. Balle, J.; Minnen, D.; Singh, S.; Hwang, S.J.; Johnston, N. Variational image compression with a scale hyperprior. In Proceedings
of the 6th International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

32. Ballé, J.; Laparra, V.; Simoncelli, E.P. End-to-end optimized image compression. In Proceedings of the 5th International Conference
on Learning Representations, Toulon, France, 24–26 April 2017.

33. Qian, Y.; Tan, Z.; Sun, X.; Lin, M.; Li, D.; Sun, Z.; Li, H.; Jin, R. Learning accurate entropy model with global reference for image
compression. In Proceedings of the International Conference on Learning Representations (ICLR), Virtual Event, Austria, 3–7
May 2021.

34. Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale structural similarity for image quality assessment. In Proceedings of the 37th
Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; Volume 2, pp. 1398–1402.
[CrossRef]

https://doi.org/10.1145/3335203.3335724
https://doi.org/10.1109/WACVW.2019.00020
https://doi.org/10.2352/ISSN.2470-1173.2019.5.MWSF-532
https://doi.org/10.1016/j.sigpro.2020.107616
https://doi.org/10.1109/WIFS47025.2019.9035107
https://doi.org/10.1109/CVPR42600.2020.00791
https://doi.org/10.1109/ICME51207.2021.9428429
https://doi.org/10.1109/TIFS.2018.2871749
https://doi.org/10.3389/frsip.2022.918725
https://doi.org/10.1007/s11042-022-12661-1
https://doi.org/10.48550/arXiv.2312.00195
https://doi.org/10.1109/DSP58604.2023.10167974
https://doi.org/10.1109/TNNLS.2021.3104974
https://www.ncbi.nlm.nih.gov/pubmed/34428157
https://doi.org/10.1109/ACSSC.2003.1292216

Algorithms 2024, 17, 375 19 of 19

35. Theis, L.; Shi, W.; Cunningham, A.; Huszár, F. Lossy Image Compression with Compressive Autoencoders. arXiv, 2017,
arXiv:1703.00395.

36. Ballé, J.; Laparra, V.; Simoncelli, E.P. End-to-end optimization of nonlinear transform codes for perceptual quality. In Proceedings
of the 2016 Picture Coding Symposium (PCS), Nuremberg, Germany, 4–7 December 2016; pp. 1–5. [CrossRef]

37. Ballé, J.; Laparra, V.; Simoncelli, E.P. Density Modeling of Images using a Generalized Normalization Transformation. In
Proceedings of the 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016.
Conference Track Proceedings 2016.

38. Skodras, A.; Christopoulos, C.; Ebrahimi, T. The JPEG 2000 still image compression standard. IEEE Signal Process. Mag. 2001, 18,
36–58. [CrossRef]

39. Bruckstein, A.M.; Elad, M.; Kimmel, R. Down-scaling for better transform compression. IEEE Trans. Image Process. 2003, 12,
1132–1144. [CrossRef]

40. Chen, P.; Xu, M.; Wang, X. Detecting Compressed Deepfake Images Using Two-Branch Convolutional Networks with Similarity
and Classifier. Symmetry 2022, 14, 2691. [CrossRef]

41. Liu, C.; Zhu, T.; Shen, S.; Zhou, W. Towards Robust Gan-Generated Image Detection: A Multi-View Completion Representation.
In Proceedings of the 32nd International Joint Conference on Artificial Intelligence (IJCAI-23), Macau SAR, China, 19–25 August
2023; pp. 464–472. [CrossRef]

42. Marra, F.; Gragnaniello, D.; Cozzolino, D.; Verdoliva, L. Detection of GAN-Generated Fake Images Over Social Networks. In
Proceedings of the 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), Miami, FL, USA, 10–12
April 2018; pp. 384–389. [CrossRef]

43. Dong, C.; Kumar, A.; Liu, E. Think Twice Before Detecting GAN-generated Fake Images from their Spectral Domain Imprints. In
Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA,
18–24 June 2022; pp. 7855–7864. [CrossRef]

44. Stockl, A. Evaluating a Synthetic Image Dataset Generated with Stable Diffusion. In Proceedings of the Eighth International
Congress on Information and Communication Technology, London, UK, 20–23 January 2023; pp. 805–818.

45. Corvi, R.; Cozzolino, D.; Zingarini, G.; Poggi, G.; Nagano, K.; Verdoliva, L. On the Detection of Synthetic Images Generated
by Diffusion Models. In Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Rhodes, Greece, 4–10 June 2023; pp. 1–5. [CrossRef]

46. Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive Growing of GANs for Improved Quality, Stability, and Variation. In
Proceedings of the International Conference on Learning Representations, Toulon, France, 24–26 April 2017.

47. Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. IEEE Trans. Pattern Anal.
Mach. Intell. 2021, 43, 4217–4228. [CrossRef]

48. Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and Improving the Image Quality of StyleGAN. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020.

49. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980,.
50. Perugachi-Diaz, Y.; Gansekoele, A.; Bhulai, S. Robustly overfitting latents for flexible neural image compression. arXiv 2024,

arXiv:2401.17789.
51. Mikami, Y.; Tsutake, C.; Takahashi, K.; Fujii, T. An Efficient Image Compression Method Based on Neural Network: An Overfitting

Approach. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22
September 2021; pp. 2084–2088. [CrossRef]

52. Wu, H.; Zhou, J.; Zhang, S. Generalizable Synthetic Image Detection via Language-guided Contrastive Learning. arXiv 2023,
arXiv:2305.13800.

53. Wang, J.; Alamayreh, O.; Tondi, B.; Barni, M. Open Set Classification of GAN-based Image Manipulations via a ViT-based
Hybrid Architecture. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), Vancouver, BC, Canada, 20–22 June 2023; pp. 953–962. [CrossRef]

54. Classification Metrics Based on True/False Positives & Negatives. Keras. Available online: https://keras.io/api/metrics/
classification_metrics/ (accessed on 1 August 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/PCS.2016.7906310
https://doi.org/10.1109/79.952804
https://doi.org/10.1109/TIP.2003.816023
https://doi.org/10.3390/sym14122691
https://doi.org/10.24963/ijcai.2023/52
https://doi.org/10.1109/MIPR.2018.00084
https://doi.org/10.1109/CVPR52688.2022.00771
https://doi.org/10.1109/ICASSP49357.2023.10095167
https://doi.org/10.1109/TPAMI.2020.2970919
https://doi.org/10.1109/ICIP42928.2021.9506367
https://doi.org/10.1109/CVPRW59228.2023.00102
https://keras.io/api/metrics/classification_metrics/
https://keras.io/api/metrics/classification_metrics/

	Introduction
	Related Works
	Proposed Method
	Image Compression
	Synthetic Image Detection

	Methodology and Experimental Results
	Datasets
	Training Setting
	Results
	Performance Analysis
	Robustness

	Discussion
	Conclusions
	References

